Obesity and Mitochondrial Function in Children: A case–control study

Authors

  • Muhammad A. Al-Kataan Department of Biochemistry, College of Medicine, University of Ninevah, Mosul, Iraq https://orcid.org/0000-0002-9670-7494
  • Mazin Mahmoud Fawzi Department of Pediatrics, College of Medicine, University of Mosul, Mosul, Iraq

DOI:

https://doi.org/10.3889/oamjms.2022.8614

Keywords:

Obesity, Mitochondrial function, Children, Lactate, Pyruvate, L-Carnitine and mt-DNA copy number

Abstract

OBJECTIVES: Childhood obesity has increased over the past years worldwide. Therefore, changes in mitochondrial function as the risk factors of obesity in children need to consider.

AIM: The study aimed to evaluate the connection between obesity and mitochondrial function in obese children.

PATIENTS AND METHODS: This study was a case–control study conducted in the primary school children in Mosul city. The study included 100 children, with an age ranged from 6 to 12 years. Fifty child with obesity (BMI ≥ 95th percentile) for children enrolled in this work and compared to 50 control with BMI <95th percentile. Mitochondrial function assessed by measurement of serum lactic acid, lactate/pyruvate ratio, and L-carnitine and mt-DNA copy number.

RESULTS: Serum lactate and the lactate/pyruvate ratio were significantly higher in obese children than in the control group, while serum pyruvate levels in children with obesity are not significantly different from those in the control group. Serum levels of L-carnitine and mt-DNA copy number significantly reduced in obese children comparison to the control group.

CONCLUSION: Changes of mitochondrial function may be involved in obesity of children.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Tan S, Yang C, Wang J. Physical training of 9-to 10-year-old children with obesity to lactate threshold intensity. Pediatr Exerc Sci. 2010;22(3):477-85. https://doi.org/10.1123/pes.22.3.477 PMid:20814042 DOI: https://doi.org/10.1123/pes.22.3.477

Pop TL, Maniu D, Rajka D, Lazea C, Cismaru G, Stef A, et al. Prevalence of underweight, overweight and obesity in school-aged children in the urban area of the northwestern part of Romania. Int J Environ Res Public Health. 2021;18(10):5176. https://doi.org/10.3390/ijerph18105176 PMid:34068152 DOI: https://doi.org/10.3390/ijerph18105176

Gahagan S. Overweight and obesity. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, Behrman RE, editors. Nelson Textbook of Pediatrics. 21th ed. Philadelphia, PA: Elsevier Inc.; 2016. p. 1876-77.

DiGirolamo M, Newby FD, lovejoy J. Lactate production in tissue: A regulated function with extra-adipose implications. FASEB J. 1992;6(7):2405-11. https://doi.org/10.1096/fasebj.6.7.1563593 PMid:1563593 DOI: https://doi.org/10.1096/fasebj.6.7.1563593

Wang Y, Wang JQ. A comparison of international references for the assessment of child and adolescent overweight and obesity in different populations. Eur J Clin Nutr. 2002;56(10):973-82. https://doi.org/10.1038/sj.ejcn.1601415 PMid:12373618 DOI: https://doi.org/10.1038/sj.ejcn.1601415

Ajejas Bazán MJ, Jiménez Trujillo MI, Wärnberg J, Fernández SD, De Andrés AL, Farinós NP. Differences in the prevalence of diagnosis of overweight-obesity in Spanish children according to the diagnostic criteria set used. Gac Sanit. 2018;32(5):477-80. https://doi.org/10.1016/j.gaceta.2017.07.014 PMid:28965658 DOI: https://doi.org/10.1016/j.gaceta.2017.07.014

Kurth BM, Schaffrath Rosario A. Overweight and obesity in children and adolescents in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2010;53(7):643-52. https://doi.org/10.1007/s00103-010-1083-2 PMid:20631974 DOI: https://doi.org/10.1007/s00103-010-1083-2

World Health Organization. Growth Reference 5-19 Years. 2007. Available from: http:/www.who.int/growthref/who2007_bmi_for_age/en/[Last accessed on 2020 Jul 10].

Deren K, Nyankovskyy S, Nyankovska O, Łuszczki E, Wyszynska J, Sobolewski M, et al. The prevalence of underweight, overweight and obesity in children and adolescents from Ukraine. Sci Rep. 2018;8(1):3625. https://doi.org/10.1038/s41598-018-21773-4 PMid:29483604 DOI: https://doi.org/10.1038/s41598-018-21773-4

Xu Y, Zhou J, Yuan Q, Su J, Li Q, Lu X, et al. Quantitative detection of circulating MT-ND1 as a potential biomarker for colorectal cancer. Bosn J Basic Med Sci. 2021;21(5):577-86. https://doi.org/10.17305/bjbms.2021.5576 PMid:33823124 DOI: https://doi.org/10.17305/bjbms.2021.5576

Nono Nankam PA, Nguelefack TB, Goedecke JH, Blüher M. Contribution of adipose tissue oxidative stress to obesity-associated diabetes risk and ethnic differences: Focus on Women of African Ancestry. Antioxidants (Basel). 2021;10(4):622. https://doi.org/10.3390/antiox10040622 PMid:33921645 DOI: https://doi.org/10.3390/antiox10040622

Sakurai T, Ogasawara J, Shirato K, Izawa T, Oh-Ishi S, Ishibashi, Y et al. Exercise training attenuates the dysregulated expression of adipokines and oxidative stress in white adipose tissue. Oxid Med Cell Longev. 2017;2017:9410954. https://doi.org/10.1155/2017/9410954 PMid:28168013 DOI: https://doi.org/10.1155/2017/9410954

Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117-32. https://doi.org/10.3390/ijms12053117 PMid:21686173 DOI: https://doi.org/10.3390/ijms12053117

Bhatraju NK, Agrawal A. Mitochondrial dysfunction linking obesity and asthma. Ann Am Thorac Soc. 2017;14:368-73. https://doi.org/10.1513/annalsats.201701-042aw2017 PMid:29161084

Vendsborg PB, Bach-Mortensen N. Fat cell size and blood lactate in humans. Scand J Clin Lab Invest. 1977;37(4):317-20. https://doi.org/10.3109/00365517709092635 PMid:616057 DOI: https://doi.org/10.3109/00365517709092635

Doar JW, Wynn V, Cramp DG. Blood pyruvate and plasma glucose levels during oral and intravenous glucose tolerance tests in obese and non-obese women. Metabolism. 1968;17(8):690-701. https://doi.org/10.1016/0026-0495(68)90053-x PMid:5676215 DOI: https://doi.org/10.1016/0026-0495(68)90053-X

Molnar D, Varga P, Rubecz I, Hamar A, Mestyan J. Food-induced thermogenesis in obese children. Eur J Pediatr. 1985;144(1):27-31. https://doi.org/10.1007/BF00491920 PMid:3894027 DOI: https://doi.org/10.1007/BF00491920

DiGirolamo M, Newby FD, Hill JO. Blood lactate levels in human obesity. Int J Obes. 1989;13:394-50.

Andersen T, McNair P, Fogh-Andersen N, Nielsen TT, Hyldstrup L, Transbol I. Increased parathyroid hormone as a consequence of changed complex binding of plasma calcium in morbid obesity. Metabolism. 1986;35(2):147-51. https://doi.org/10.1016/0026-0495(86)90116-2 PMid:3080652 DOI: https://doi.org/10.1016/0026-0495(86)90116-2

Fleischman A, Kron M, Systrom DM, Hrovat M, Grinspoon SK. Mitochondrial function and insulin resistance in overweight and normal-weight children. J Clin Endocrinol Metab. 2009;94(12):4923-30. https://doi.org/10.1210/jc.2009-1590 PMid:19846731 DOI: https://doi.org/10.1210/jc.2009-1590

Burrell JA, Richard AJ, King WT, Stephens JM. Mitochondrial pyruvate carriers are not required for adipogenesis but are regulated by high‐fat feeding in brown adipose tissue. Obesity (Silver Spring). 2020;28(2):293-302. https://doi.org/10.1002/oby.22678 PMid:31970913 DOI: https://doi.org/10.1002/oby.22678

Liu D, Zeng X, Li L, Ou Z. Carnitine promotes recovery from oxidative stress and extends lifespan in Caenorhabditis elegans. Aging (Albany NY). 2021;13(1):813-30. https://doi.org/10.18632/aging.202187 PMid:33290254 DOI: https://doi.org/10.18632/aging.202187

Tipi-Akbas P, Arioz DT, Kanat-Pektas M, Koken T, Koken G, Yilmazer M. Lowered serum total L-carnitine levels are associated with obesity at term pregnancy. J Matern Fetal Neonatal Med. 2013;26(15):1479-83. https://doi.org/10.3109/14767058.2013.789847 PMid:23560471 DOI: https://doi.org/10.3109/14767058.2013.789847

Gao X, Sun G, Randell E, Tian Y, Zhou H. Systematic investigation of the relationships of trimethylamine N-oxide and L-carnitine with obesity in both humans and rodents. Food Funct. 2020;11(9):7707-16. https://doi.org/10.1039/d0fo01743d DOI: https://doi.org/10.1039/D0FO01743D

Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossnerg P, et al. Biomarkers of nucleic acid oxidation-a summary state-of-the-art. Redox Biol. 2021;42:101872. https://doi.org/10.1016/j.redox.2021.101872 PMid:33579665 DOI: https://doi.org/10.1016/j.redox.2021.101872

Huang J, Tan L, Shen R, Zhang L, Zuo H, Wang DW. Decreased peripheral mitochondrial DNA copy number is associated with the risk of heart failure and long-term outcomes. Medicine (Baltimore). 2016;95(15):3323. https://doi.org/10.1097/md.0000000000003323 PMid:27082579 DOI: https://doi.org/10.1097/MD.0000000000003323

Rupérez AI, Mesa MD, Anguita-Ruiz A, González-Gil EM, Vázquez-Cobela R, Moreno LA, et al. Antioxidants and oxidative stress in children: Influence of puberty and metabolically unhealthy status. Antioxidants (Basel). 2020;9(7):618. https://doi.org/10.3390/antiox9070618 PMid:32679739 DOI: https://doi.org/10.3390/antiox9070618

Downloads

Published

2022-02-17

How to Cite

1.
Al-Kataan MA, Fawzi MM. Obesity and Mitochondrial Function in Children: A case–control study. Open Access Maced J Med Sci [Internet]. 2022 Feb. 17 [cited 2024 Mar. 28];10(B):1153-7. Available from: https://oamjms.eu/index.php/mjms/article/view/8614