Physicochemical Properties of Milkfish Gelatin-Natural Starch Composite

Authors

  • Isriany Ismail Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Islam Negeri Alauddin, Makassar, Indonesia; Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia https://orcid.org/0000-0002-5407-7738
  • M. Natsir Djide Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
  • Marianti A. Manggau Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
  • Latifah Rahman Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia https://orcid.org/0000-0002-5407-7738

DOI:

https://doi.org/10.3889/oamjms.2022.8618

Keywords:

Gelatin-starch composite, Gelatin modification, Milkfish gelatin

Abstract

Halal gelatin sourced from fish can be improved in quality through mixing with other polymers so that it can be an alternative as food, pharmaceutical, and cosmetic ingredient. The purpose of this study was to determine the characteristics of milkfish scale gelatin after the formation of a composite with corn, potato, and cassava starch to be used as a pharmaceutical and food excipient.

The gelatin composite (FMG) of milkfish scales with corn, potato, and cassava starch (GM, GS, and GC) was made by casting method, using a ratio of gelatin and starch (4,5:0,5). Characteristic assessment includes organoleptic, viscosity, swelling index, FT-IR spectroscopy, and Calorimetry (DSC). Data analysis used a non-parametric One Way ANOVA statistical method (p<0.05).

The composites produced from mixing FMG with corn starch (GM), potato (GS) and cassava (GC) showed hygroscopic properties, increased viscosity values and decreased swelling index in GM (7.89 cP & 25.0%), GS (8 .36 cP & 21.0%), and GC (8.64 cP & 12.7%), compared to FMG (0.11 cP & 75%) at p < 0.05. The behavior of the composite FT-IR spectrum follows the FMG spectrum pattern with a shift in wavenumber in the typical bands (Amide A, Amide B, Amide I, Amide II, and Amide III) in the gelatin spectrum. There was a shift of Tg to higher values in GM and GS, Tm increased in GM and GC, and all composites showed a decrease in melting enthalpy.

The spectral pattern of the composite follows the typical spectral pattern of FMG. GM, GS, and GC composites showed increased viscosity, water retention, and thermal stability compared to FMG. GM and GS may be used as pharmaceutical and food excipients.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Benjakul S, Kittiphattanabawon P, Regenstein JM. Fish Gelatin Food Biochemistry and Food Processing. 2nd ed. Ames, IA, USA: Wiley; 2012. p. 388-405. DOI: https://doi.org/10.1002/9781118308035.ch21

Huang T, Cai TZ, Shangguan X, Sha X, Wang H, Zhang L, et al. Fish gelatin modifications: A comprehensive review. Trends Food Sci Technol. 2019;86:260-9. DOI: https://doi.org/10.1016/j.tifs.2019.02.048

Kang MG, Lee MY, Cha JM, Lee JK, Lee SC, Kim J, et al. Nanogels derived from fish gelatin: Application to drug delivery system. Mar Drugs. 2019;17(4):246. https://doi.org/10.3390/md17040246 PMid:31027308 DOI: https://doi.org/10.3390/md17040246

Al-Nimry S, Dayah AA, Hasan I, Daghmash R. Cosmetic, biomedical and pharmaceutical applications of fish gelatin/ hydrolysates. Mar Drugs. 2021;19(3):145. https://doi.org/10.1080/10.3390/md19030145 DOI: https://doi.org/10.3390/md19030145

Huang CY, Tsai YH, Hong YH, Hsieh SL, Huang RH. Characterization and antioxidant and angiotensin I-converting enzyme (ACE)-inhibitory activities of gelatin hydrolysates prepared from extrusion-pretreated milkfish (Chanos chanos) scale. Mar Drugs. 2018;16(10):1-20. DOI: https://doi.org/10.3390/md16100346

Guerrero P, Zugasti I, Etxabide A, Bao HN, Si TT, Peñalba M, et al. Effect of fructose and ascorbic acid on the performance of cross-linked fish gelatin films. Polymers (Basel). 2020;12(3):570. PMid:32143479 DOI: https://doi.org/10.3390/polym12030570

Coppola D, Oliviero M, Vitale GA, Lauritano C, D’Ambra I, Iannace S, et al. Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Mar Drugs. 2020;18(4):214. https://doi.org/10.3390/md18040214 DOI: https://doi.org/10.3390/md18040214

Sousa SC, Vázquez JA, Pérez-Martín RI, Carvalho AP, Gomes AM. Valorization of by-products from commercial fish species: Extraction and chemical properties of skin gelatins. Molecules. 2017;22(9):1545; https://doi.org/10.3390/molecules22091545 DOI: https://doi.org/10.3390/molecules22091545

Haug IJ, Draget KI, Smidsrød O. Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocoll. 2004;18(2):203-13. DOI: https://doi.org/10.1016/S0268-005X(03)00065-1

Ninan G, Joseph J, Aliyamveettil ZA. A comparative study on the physical, chemical and functional properties of carp skin and mammalian gelatins. J Food Sci Technol. 2014;51(9):2085-91. https://doi.org/10.1007/s13197-012-0681-4 PMid:25190867 DOI: https://doi.org/10.1007/s13197-012-0681-4

Ismail I, Hamzah N, Qurrataayyun S, Rahayu S, Tahir KA, Djide MN. Extraction and Characteristic of Gelatin from Milkfish (Chanos chanos) Scales and Bones with Variation in Acid and Base Concentrations, Extracting and Drying Method. 1st International Conference on Science and Technology, ICOST 2019, 2-3 May, Makassar, Indonesia; 2019. p. 5-10. DOI: https://doi.org/10.4108/eai.2-5-2019.2284683

Mostafa AG. Physicochemical characteristics of gelatin extracted from catfish (Clarias gariepinus) and Carp (Cyprinus carpio) Skins. Middle East J Agric. 2015;4(2):359-72.

Masirah, Widjanarko SB, dan Yuwono S. Optimization of extraction of milkfish (Chanos chanos, forskal) gelatin using RSM-Bbd (response surface methodology box behnkendesign). Int J ChemTech Res. 2017;10(4):533-41.

Derkach SR, Voron’ko NG, Kuchina YA, Kolotova DS. Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies. Polymers (Basel). 2020;12(12):3051. https://doi.org/10.3390/polym12123051 PMid:33352683 DOI: https://doi.org/10.3390/polym12123051

Pan L, Li P, Tao Y. Preparation and properties of microcrystalline cellulose/fish gelatin composite film. Materials (Basel). 2020;13(19):4370. https://doi.org/10.3390/ma13194370 PMid:33008075 DOI: https://doi.org/10.3390/ma13194370

Uranga J, Nguyen BT, Si TT, Guerrero P, De la Caba K. The effect of cross-linking with citric acid on the properties of agar/ fish gelatin films. Polymers (Basel). 2020;12(2):1-12. DOI: https://doi.org/10.3390/polym12020291

Etxabide A, Ribeiro RD, Guerrero P, Ferreira AM, Stafford GP, Dalgarno K, et al. Lactose-crosslinked fish gelatin-based porous scaffolds embedded with tetrahydrocurcumin for cartilage regeneration. Int J Biol Macromol. 2018;117(1):199-208. DOI: https://doi.org/10.1016/j.ijbiomac.2018.05.154

Binsi PK, Nayak N, Sarkar PC, Joshy CG, Ninan G, Ravishankar CN. Gelation and thermal characteristics of microwave extracted fish gelatin-natural gum composite gels. J Food Sci Technol. 2017;54(2):518-30. https://doi.org/10.1007/s13197-017-2496-9 PMid:28242951 DOI: https://doi.org/10.1007/s13197-017-2496-9

Dong Y, Chen H, Qiao P, Liu Z. Development and properties of fish gelatin/oxidized starch double network film catalyzed by thermal treatment and schiff’ base reaction. Polymers (Basel). 2019;11(12):2065. https://doi.org/10.3390/polym11122065 PMid:31835840 DOI: https://doi.org/10.3390/polym11122065

Derkach SR, Kolotova DS, Voron’ko NG, Obluchinskaya ED, Malkin AY. Rheological properties of fish gelatin modified with sodium alginate. Polymers (Basel). 2021;13(5):743. https://doi.org/10.3390/polym13050743 PMid:33673621 DOI: https://doi.org/10.3390/polym13050743

Duconseille A, Astruc T, Quintana N, Meersman F, Sante-Lhoutellier V. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocoll. 2015;43:360-76. DOI: https://doi.org/10.1016/j.foodhyd.2014.06.006

Staroszczyk H, Pielichowska J, Sztuka K, Stangret J, Kołodziejska I. Molecular and structural characteristics of cod gelatin films modified with EDC and TGase. Food Chem. 2012;130(2):335-43. DOI: https://doi.org/10.1016/j.foodchem.2011.07.047

Babin H, Dickinson E. Influence of transglutaminase treatment on the thermoreversible gelation of gelatin. Food Hydrocoll. 2001;15(3):271-6. DOI: https://doi.org/10.1016/S0268-005X(01)00025-X

Defloor I, Dehing I, Delcour JA. Physico-Chemical Properties of Cassava Starch. Starch - Stärke, 50(2-3), 58–64. https://doi.org/10.1002/(sici)1521-379x(199803)50:2/3<58::aid-star58>3.0.co;2-n DOI: https://doi.org/10.1002/(SICI)1521-379X(199803)50:2/3<58::AID-STAR58>3.0.CO;2-N

Mishra S, Rai T. Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocoll. 2006;20(5):557-66. DOI: https://doi.org/10.1016/j.foodhyd.2005.01.001

Chuaynukul K, Nagarajan M, Prodpran T, Benjakul S, Songtipya P, Songtipya L. Comparative characterization of bovine and fish gelatin films fabricated by compression molding and solution casting methods. J Polym Environ. 2018;26(3):1239-52. DOI: https://doi.org/10.1007/s10924-017-1030-5

ASTM D5890-06. Bentonite Swell Index Bentonite Swell Index. Standard; 2006. Available from: https://www.globalsynthetics.com.au. [Last accessed on 2020 Nov 02].

Hassan N, Ahmad T, Zain NM, Awang SR. Identification of bovine, porcine and fish gelatin signatures using chemometrics fuzzy graph method. Sci Rep. 2021;11(1):1-10. https://doi.org/10.1038/s41598-021-89358-2 DOI: https://doi.org/10.1038/s41598-021-89358-2

Zhao Y, Khalid N, Shu G, Neves MA, Kobayashi I, Nakajima M. Complex coacervates from gelatin and octenyl succinic anhydride modified kudzu starch: Insights of formulation and characterization. Food Hydrocoll. 2019;86:70-7. https://doi.org/10.1016/j.foodhyd.2018.01.040 DOI: https://doi.org/10.1016/j.foodhyd.2018.01.040

Alvarez-Ramirez J, Vernon-Carter EJ, Carrillo-Navas H, Meraz M. Effects of cooking temperature and time on the color, morphology, crystallinity, thermal properties, starch-lipid complexes formation and rheological properties of roux. LWT Food Sci Technol. 2018;91:203-12. https://doi.org/10.1016/j.lwt.2018.01.038 DOI: https://doi.org/10.1016/j.lwt.2018.01.038

Nazmi NN, Isa MI, Sarbon NM. Preparation and characterization of chicken skin gelatin/CMC composite film as compared to bovine gelatin film. Food Biosci. 2017;19:149-55. https://doi.org/10.1016/j.fbio.2017.07.002 DOI: https://doi.org/10.1016/j.fbio.2017.07.002

Shin S, Park S, Park M, Jeong E, Na K, Youn HJ, et al. Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives. BioResources. 2017;12(2):2941-54. DOI: https://doi.org/10.15376/biores.12.2.2941-2954

Li Y, Cao C, Pei Y, Liu X, Tang K. Preparation and properties of microfibrillated chitin/gelatin composites. Int J Biol Macromol. 2019;130:715-9. https://doi.org/10.1016/j.ijbiomac.2019.03.014 DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.014

Pasaribu SP, Kaban J, Ginting M, Silalahi J. Preparation of in situ cross-linked N-maleoyl chitosan-oxidized sodium alginate hydrogels for drug delivery applications. Open Access Maced J Med Sci. 2019;7(21):3546-53. DOI: https://doi.org/10.3889/oamjms.2019.850

Ge S, Liu Q, Li M, Liu J, Lu H, Li F, et al. Enhanced mechanical properties and gelling ability of gelatin hydrogels reinforced with chitin whiskers. Food Hydrocoll. 2018;75:1-12. DOI: https://doi.org/10.1016/j.foodhyd.2017.09.023

Niu Y, Xia Q, Li N, Wang Z, Yu LL. Gelling and bile acid binding properties of gelatin-alginate gels with interpenetrating polymer networks by double cross-linking. Food Chem. 2019;270(1):223-8. https://doi.org/10.1016/j.foodchem.2018.07.105 PMid:30174038 DOI: https://doi.org/10.1016/j.foodchem.2018.07.105

Sow LC, Toh NZ, Wong CW, Yang H. Combination of sodium alginate with tilapia fish gelatin for improved texture properties and nanostructure modification. Food Hydrocoll. 2019;94:459-67. DOI: https://doi.org/10.1016/j.foodhyd.2019.03.041

Wahyuni HS, Yuliasmi S, Aisyah HS, Riati D. Characterization of synthesized sodium carboxymethyl cellulose with variation of solvent mixture and alkali concentration. Open Access Maced J Med Sci. 2019;7(22):3878-81. https://doi.org/10.3889/oamjms.2019.524 PMid:32127996 DOI: https://doi.org/10.3889/oamjms.2019.524

Khorshidi S, Karkhaneh A. A self-crosslinking tri-component hydrogel based on functionalized polysaccharides and gelatin for tissue engineering applications. Mater Lett. 2016;164:468-71. https://doi.org/10.1016/j.matlet.2015.11.041 DOI: https://doi.org/10.1016/j.matlet.2015.11.041

Derkach SR, Voron’ko NG, Sokolan NI, Kolotova DS, Kuchina YA. Interactions between gelatin and sodium alginate: UV and FTIR studies. J Dispers Sci Technol. 2020;41(5):690-8. https://doi.org/10.1080/01932691.2019.1611437 DOI: https://doi.org/10.1080/01932691.2019.1611437

Shi C, Tao F, Cui Y. New starch ester/gelatin based films: Developed and physicochemical characterization. Int J Biol Macromol. 2018;109:863-71. https://doi.org/10.1016/j.ijbiomac.2017.11.073 DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.073

Qiao C, Ma X, Zhang J, Yao J. Molecular interactions in gelatin/ chitosan composite films. Food Chem. 2017;235(1):45-50. https://doi.org/10.1016/j.foodchem.2017.05.045 DOI: https://doi.org/10.1016/j.foodchem.2017.05.045

Lin J, Wang Y, Pan D, Sun Y, Ou C, Cao J. Physico-mechanical properties of gelatin films modified with Lysine, Arginine and Histidine. Int J Biol Macromol. 2018;108:947-52. https://doi.org/10.1016/j.ijbiomac.2017.11.015 DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.015

De Carvalho RA, Grosso CR. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocoll. 2004;18(5):717-26. DOI: https://doi.org/10.1016/j.foodhyd.2003.10.005

Downloads

Published

2022-04-01

How to Cite

1.
Ismail I, Djide MN, Manggau MA, Rahman L. Physicochemical Properties of Milkfish Gelatin-Natural Starch Composite. Open Access Maced J Med Sci [Internet]. 2022 Apr. 1 [cited 2023 Mar. 28];10(A):540-7. Available from: https://oamjms.eu/index.php/mjms/article/view/8618