Effect of Preheating and Vibration on Microhardness and Microleakage of Microhybrid Resin Composite (In Vitro Study)
DOI:
https://doi.org/10.3889/oamjms.2022.8639Keywords:
Microhardness, Microleakage, Microhybrid resin composite, Preheating, Sonic vibrationAbstract
BACKGROUND: Preheating and sonic vibration are two methods for the treatment of microhybrid resin composites that may effect on their mechanical and physical properties.
AIM: This study was conducted to assess the effect of using preheating and sonic vibration on microhardness and microleakage of microhybrid resin composite
METHODS AND MATERIALS: For microhardness test, a total of 30 samples of resin composite discs were prepared. Samples were divided into three groups according to the method of treatment of resin composite, controlled group (T0), preheated group (T1), and sonic vibration group (T2). Surface microhardness values were evaluated at baseline and after thermocycling. For microleakage test, a total of 30 Class-V cavities were prepared on the labial surfaces of extracted human anterior teeth. The cavities were then divided into three groups according to the method of resin composite treatment as mentioned before in the microhardness test. All samples were sectioned; then two-dimensional cross-sectional images from each sample. Each cross-sectional image was analyzed using Image J software to quantify interfacial microleakage at the cavity floor.
STATISTICAL ANALYSIS USED: Two-way ANOVA analysis was used to test the effects of thermocycling on three groups of each test. One-way ANOVA was used to compare between three different methods of resin composite treatment.
RESULTS: For microhardness at baseline revealed that the highest mean value was recorded for the control group, followed by the sonic vibration group meanwhile, the lowest mean value was recorded for the sonic vibration group, followed by preheated group at microleakage test.
CONCLUSION: Preheating and sonic vibration of microhybrid resin composite does not improve its microhardness; however, sonic vibration provides better marginal adaptation than the preheating and the conventional methods.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Deb S, Di Silvio L, Mackler H, Millar B. Pre-warming of dental composites. Dent Mater. 2011;27(4):e51-59. https://doi.org/10.1016/j.dental.2010.11.009 PMid:21145580 DOI: https://doi.org/10.1016/j.dental.2010.11.009
Manhart J, Chen HY, Mehl A, Weber K, Hickel R. Marginal quality and microleakage of adhesive class V restoration. J Dent. 2001;29(2):123-30. https://doi.org/10.1016/s0300-5712(00)00066-x PMid:11239587 DOI: https://doi.org/10.1016/S0300-5712(00)00066-X
Awliya WY. The influence of temperature on the efficacy of polymerization of resin composite. J Contemp Dent Pract. 2007;8(6):9-16. PMid:17846666 DOI: https://doi.org/10.5005/jcdp-8-6-9
Labella R, Lambrechts P, Van Meerbeek B, Vanherle G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater. 1999;15(2):128-37. https://doi.org/10.1016/s0109-5641(99)00022-6 PMid:10551104 DOI: https://doi.org/10.1016/S0109-5641(99)00022-6
Kleverlaan CJ, Feilzer AJ. Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater. 2005;21(12):1150-7. https://doi.org/10.1016/j.dental.2005.02.004 PMid:16040118 DOI: https://doi.org/10.1016/j.dental.2005.02.004
Osternack FH, Caldas DB, Almeida JB, Souza EM, Mazur RF. Effects of preheating and precooling on the hardness and shrinkage of a resin composite cured with QTH and LED. Oper Dent. 2013;38(3):1-8. https://doi.org/10.2341/11-411-L PMid:23088189 DOI: https://doi.org/10.2341/11-411-L
Arslan S, Demirbuga S, Zorba YO, Ucar FI, Tuncay O. The effect of pre-heating silorane and methacrylate-based composites on microleakage of class v restorations. Eur J Dent. 2012;1:178-82. DOI: https://doi.org/10.4103/2278-9626.105383
Fróes-Salgado NR, Silva LM, Kawano Y, Francci C, Reis A, Loguercio AD. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent Mater. 2010;26(9):908-14. https://doi.org/10.1016/j.dental.2010.03.023 PMid:20557926 DOI: https://doi.org/10.1016/j.dental.2010.03.023
Daronch M, Rueggeberg FA, De Goes MF. Monomer conversion of pre-heated composite. J Dent Res. 2005;84(7):663-7. https://doi.org/10.1177/154405910508400716 PMid:15972598 DOI: https://doi.org/10.1177/154405910508400716
Iovan G, Stoleriu S, Moldovanu A, Morogai S, Andrian S. Sem study of the interface between the cavity wall and resin composite in cavities filled using vibration. Int J Med Dent. 2011;1(3):254-8.
Han SH, Lee IB. Effect of vibration on adaptation of dental composites in simulated tooth cavities. Korea-Aust Rheol J. 2018;30(4):241-8. DOI: https://doi.org/10.1007/s13367-018-0023-9
Arisu HD, Uçtasli MB, Eligüzeloglu E, Ozcan S, Omürlü H. The effect of occlusal loading on the microleakage of class V restorations. Oper Dent. 2008;33(2):135-41. https://doi.org/10.2341/07-49 PMid:18435186 DOI: https://doi.org/10.2341/07-49
Faul F, Erdfelder E, Buchner A, Lang AG. G*Power Version 3.1.7 [Computer Software]. Germany: Universität Kiel; 2013. Available from: https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
Cohen J. Statistical Power Analysis for the Behavioral Sciences. Vol. 1. Hillsdale, New Jersey: Lawrence Erlbaum Associates; 1988. p. 490.
Pala K, Tekce N, Tuncer S, Demirci M, Oznurhan F, Serim M. Flexural strength and microhardness of anterior composites after accelerated aging. J Clin Exp Dent. 2017;9(3):e424-30. https://doi.org/10.4317/jced.53463 PMid:28298986 DOI: https://doi.org/10.4317/jced.53463
Pazinatto F, Campos B, Costa L, Atta M. Effect of the number of thermocycles on microleakage of Resin composite restorations. Pesqui Odontol Bras. 2003;17(4):337-41. https://doi.org/10.1590/s1517-74912003000400008 PMid:15107916 DOI: https://doi.org/10.1590/S1517-74912003000400008
Yoldas O, Akova T, Uysal H. Influence of different indentation load and dwell time on Knoop microhardness tests for composite materials. Polym Test. 2004;23(3):343-6. DOI: https://doi.org/10.1016/S0142-9418(03)00104-1
Turkistani A, Almutairi M, Banakhar N, Rubehan R, Mugharbil S, Jamleh A, et al. Optical evaluation of enamel microleakage with one-step self-etch adhesives. Photomed Laser Surg. 2018;36(11):589-94. https://doi.org/10.1089/pho.2018.4441 PMid:29813001 DOI: https://doi.org/10.1089/pho.2018.4441
Takahashi H, Finger WJ, Wegner K, Utterodt A, Komatsu M, Wöstmann B. Factors influencing marginal cavity adaptation of nanofiller containing Resin composite restorations. Dent Mater. 2010;26(12):1166-75. https://doi.org/10.1016/j.dental.2010.08.189 PMid:20884047 DOI: https://doi.org/10.1016/j.dental.2010.08.189
Yang J, Raj J, Sherlin H. Effects of preheated composite on micro leakage-an in-vitro study. J Clin Diagn Res. 2016;10(6):36-8. https://doi.org/10.7860/JCDR/2016/18084.7980 PMid:27504407 DOI: https://doi.org/10.7860/JCDR/2016/18084.7980
Scotti N, Alovisi C, Comba A, Ventura G, Pasqualini D, Grignolo F. Evaluation of composite adaptation to pulpal chamber floor using optical coherence tomography. J Endod. 2016;42(1):160-3. https://doi.org/10.1016/j.joen.2015.10.006 PMid:26603769 DOI: https://doi.org/10.1016/j.joen.2015.10.006
Poskus L, Latempa A, Chagas M, Silva E, Leal M, Guimarães J. Influence of post-cure treatments on hardness and marginal adaptation of resin composite inlay restorations: An in vitro study. J Appl Oral Sci. 2009;17(6):617-22. https://doi.org/10.1590/s1678-77572009000600015 PMid:20027437 DOI: https://doi.org/10.1590/S1678-77572009000600015
Mohammadi N, Navimipour E, Kimyai S, Ajami A, Bahari M, Ansarin M. Effect of pre-heating on the mechanical properties of silorane-based and methacrylate-based composites. J Clin Exp Dent. 2016;8(4):373-8. https://doi.org/10.4317/jced.52807 PMid:27703604 DOI: https://doi.org/10.4317/jced.52807
Baroudi K, Mahmoud RS. Improving resin composite performance through decreasing its viscosity by different methods. Open Dent J. 2015;9:235-42. https://doi.org/10.2174/1874210601509010235 PMid:26312094 DOI: https://doi.org/10.2174/1874210601509010235
Trujillo M, Newman SM, Stansbury JW. Use of near-ir to monitor the influence of external heating on dental composite photopolymerization. Dent Mater. 2004;20(8):766-77. https://doi.org/10.1016/j.dental.2004.02.003 PMid:15302457 DOI: https://doi.org/10.1016/j.dental.2004.02.003
Demirel G, Orhan A, Irmak Ö, Aydin F, Buyuksungur A, Bilecenoğlu B, et al. Micro-computed tomographic evaluation of the effects of pre-heating and sonic delivery on the internal void formation of bulk-fill composites. Dent Mater J. 2021;40(2):525-31. https://doi.org/10.4012/dmj.2020-071 PMid:33268693 DOI: https://doi.org/10.4012/dmj.2020-071
Soliman E, Elgayar I, Kamar A. Effect of preheating on microleakage and microhardness of resin composite (an in vitro study). Alex Dent J. 2016;41(1):4-11. DOI: https://doi.org/10.21608/adjalexu.2016.59163
García A, Lozano M, Vila J, Escribano A, Galve P. Resin composites. A review of the materials and clinical indications. Clin Dent Med Oral Patol Oral Cir Bucal. 2016;11(2):215-20. PMid:16505805
Daronch M, Rueggeberg F, Hall G, De Goes M. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater. 2007;23(10):1283-8. https://doi.org/10.1016/j.dental.2006.11.024 PMid:17197016 DOI: https://doi.org/10.1016/j.dental.2006.11.024
Walter R, Swift E Jr., Sheikh H, Ferracane JL. Effects of temperature on resin composite shrinkage. Quintessence Int. 2009;40(10):843-7. PMid:19898716
Lucey S, Lynch CD, Ray NJ, Burke FM, Hannigan A. Effect of pre-heating on the viscosity and microhardness of a resin composite. J Oral Rehabil. 2010;37:278282. DOI: https://doi.org/10.1111/j.1365-2842.2009.02045.x
Poggio C, Lombardini M, Gaviati S, Chiesa M. Evaluation of vickers hardness and depth of cure of six resin composites photo-activated with different polymerization modes. J Conserv Dent. 2012;15(3):237-41. https://doi.org/10.4103/0972-0707.97946 PMid:22876009 DOI: https://doi.org/10.4103/0972-0707.97946
Tirado JI, Nagy WW, Dhuru VB, Ziebert AJ. The effect of thermocycling on the fracture toughness and hardness of core buildup materials. J Prosthet Dent. 2001;86(5):474-80. https://doi.org/10.1067/mpr.2001.120110 PMid:11725275 DOI: https://doi.org/10.1067/mpr.2001.120110
Khan A. Effect of ultrasonic vibration on structural and physical properties of resin-based dental composites. Polymers. 2021;13:2054. https://doi.org/10.3390/polym13132054 PMid:34201660 DOI: https://doi.org/10.3390/polym13132054
Haak R, Wicht MJ, Hellmich M, Noack MJ. Detection of marginal defects of composite restorations with conventional and digital radiographs. Eur J Oral Sci. 2002;110(4):282-6. https://doi.org/10.1034/j.1600-0722.2002.21271.x PMid:12206589 DOI: https://doi.org/10.1034/j.1600-0722.2002.21271.x
Sun J, Fang R, Lin N. Nondestructive quantification of leakage at the tooth composite interface and its correlation with material performance parameters. Biomaterials 2009;30(27):4457-62. https://doi.org/10.1016/j.biomaterials.2009.05.016 PMid:19515419 DOI: https://doi.org/10.1016/j.biomaterials.2009.05.016
De Santis R, Mollica F, Prisco D. A 3D analysis of mechanically stressed dentin- adhesive-composite interfaces using X-ray micro-CT. Biomaterials. 2005;26(3):257-70. https://doi.org/10.1016/j.biomaterials.2004.02.024 PMid:15262468 DOI: https://doi.org/10.1016/j.biomaterials.2004.02.024
Bakhsh TA, Sadr A, Shimada Y. Noninvasive quantification of resin-dentin interfacial gaps using optical coherence tomography: Validation against confocal microscopy. Dent Mater. 2011;27(9):915-25. https://doi.org/10.1016/j.dental.2011.05.003 PMid:21665263 DOI: https://doi.org/10.1016/j.dental.2011.05.003
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Mohammed Nabil, A. F. Abo Elezz, R. K. Safy (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0