Blended Motor-Sensory Nerve Bundles on Diffused Tensor Imaging: Evidence of Brain Plasticity in a Patient with 36-year Sequelae from Encephalitis

Authors

  • Khanh Lam Department of Diagnostic Imaging, Hospital 108, Hanoi, Vietnam
  • Pham Thanh Nguyen Department of Anatomy, Haiphong Medical University, Haiphong, Vietnam
  • Lam Viet Anh Department of Medicine, College of Health Sciences, Vin University, Hanoi, Vietnam
  • Tran Lien Department of Medicine, The University of Melbourne, Victoria, Australia

DOI:

https://doi.org/10.3889/oamjms.2022.8643

Keywords:

Sensory thalamocortical tract, Motor corticospinal tract, Diffusion tensor imaging, 3.0 Tesla magnetic resonance imaging scanner, Brain plasticity

Abstract

BACKGROUND: Brain plasticity refers to the extraordinary ability of the brain to modify its structure and function following changes within the body or in the external environment. However, it is not easy to find it on non-invasive imaging modality.

CASE REPORT: In this article, we report the case of a 36-year-old male patient with sequelae of encephalitis. The patient had general epilepsy with multiple hospital admissions. MRI 3.0 Tesla showed his cerebral hemispheres were asymmetrical both morphologically and tractographically; there was a scar at the right temporo-occipital region, and an atrophy of the right temporal lobe, hippocampus and pontine. DTI reconstruction showed asymmetrical cortico-spinal and thalamo-cortical tracts with posterior thalamo-cortical tract was partly damaged by the scar. Blended motor-sensory nerve bundles were observed only on the left side of the patient’s brain but not on the right or healthy subjects. DTI quantification showed the lower line number, lower FA and higher ADC in the patient compared to healthy subjects and within the patient with decreased functionality on the side of the scar.

CONCLUSION: Non-invasive DTI with 3D image reconstruction on the patient showed evidence of brain plasticity appeared on cortico-spinal and thalamo-cortical tracts and can inform diagnosis and treatment strategies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Barbas H, Pandya DN. Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol. 1987;256(2):211-28. https://doi.org/10.1002/cne.902560203 PMid:3558879 DOI: https://doi.org/10.1002/cne.902560203

Hasan KM, Walimuni IS, Abid H, Hahn KR. A review of diffusion tensor magnetic resonance imaging computational methods and software tools. Comput Biol Med. 2011;41(12):1062-72. https://doi.org/10.1016/j.compbiomed.2010.10.008 PMid:21087766 DOI: https://doi.org/10.1016/j.compbiomed.2010.10.008

Scannell JW, Burns GA, Hilgetag CC, O’Neil MA, Young MP. The connectional organization of the cortico-thalamic system of the cat. Cerebral Cortex. 1999;9(3):277-99. https://doi.org/10.1093/cercor/9.3.277 PMid:10355908 DOI: https://doi.org/10.1093/cercor/9.3.277

Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259-67. https://doi.org/10.1016/S0006-3495(94)80775-1 PMid:8130344 DOI: https://doi.org/10.1016/S0006-3495(94)80775-1

Beaulieu C, Allen PS. Water diffusion in the giant axon of the squid: Implications for diffusion-weighted MRI of the nervous system. Magn Reson Med. 1994;32(5):579-83. https://doi.org/10.1002/mrm.1910320506 PMid:7808259 DOI: https://doi.org/10.1002/mrm.1910320506

O’Donnell LJ, Westin CF. An introduction to diffusion tensor image analysis. Neurosurg Clin North Am. 2011;22(2):185-96. https://doi.org/10.1016/j.nec.2010.12.004 PMid:21435570 DOI: https://doi.org/10.1016/j.nec.2010.12.004

Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A. Diffusion-based tractography in neurological disorders: Concepts, applications, and future developments. Lancet Neurol. 2008;7(8):715-27. https://doi.org/10.1016/S1474-4422(08)70163-7 PMid:18635020 DOI: https://doi.org/10.1016/S1474-4422(08)70163-7

Jones DK. Studying connections in the living human brain with diffusion MRI. Cortex. 2008;44(8):936-52. https://doi.org/10.1016/j.cortex.2008.05.002 PMid:18635164 DOI: https://doi.org/10.1016/j.cortex.2008.05.002

Lazar M. Mapping brain anatomical connectivity using white matter tractography. NMR Biomed. 2010;23(7):821-35. https://doi.org/10.1002/nbm.1579 PMid:20886567 DOI: https://doi.org/10.1002/nbm.1579

Löbel U, Sedlacik J, Güllmar D, Kaiser WA, Reichenbach JR, Mentzel HJ. Diffusion tensor imaging: The normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology. 2009;51(4):253-63. https://doi.org/10.1007/s00234-008-0488-1 PMid:19132355 DOI: https://doi.org/10.1007/s00234-008-0488-1

Beaulieu C, Allen PS. Determinants of anisotropic water diffusion in nerves. Magn Reson Med. 1994;31(4):394-400. https://doi.org/10.1002/mrm.1910310408 PMid:8208115 DOI: https://doi.org/10.1002/mrm.1910310408

Provenzale JM, Isaacson J, Chen S, Stinnett S, Liu C. Correlation of apparent diffusion coefficient and fractional anisotropy values in the developing infant brain. Am J Roentgenol. 2010;195(6):W456-62. https://doi.org/10.2214/AJR.10.4886 PMid:21098179 DOI: https://doi.org/10.2214/AJR.10.4886

Passingham RE, Stephan KE, Kötter R. The anatomical basis of functional localization in the cortex. Nat Rev Neurosci. 2002;3(8):606-16. https://doi.org/10.1038/nrn893 PMid:12154362 DOI: https://doi.org/10.1038/nrn893

Mufson EJ, Brady DR, Kordower JH. Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol Aging. 1990;11(6):649-53. https://doi.org/10.1016/0197-4580(90)90031-t PMid:1704107 DOI: https://doi.org/10.1016/0197-4580(90)90031-T

Van Buren JM, Borke RC. Variations and Connections of the Human Thalamus. Electronic Resource. Berlin, Germany: Springer-Verlag; 1972. DOI: https://doi.org/10.1007/978-3-642-88594-5

Kim SA, Kim DW, Dong BQ, Kim JS, Anh DD, Kilgore PE. An expanded age range for meningococcal meningitis: Molecular diagnostic evidence from population-based surveillance in Asia. BMC Infect Dis. 2012;12:310. https://doi.org/10.1186/1471-2334-12-310 PMid:23164061 DOI: https://doi.org/10.1186/1471-2334-12-310

Oberti J, Hoi NT, Caravano R, Tan CM, Roux J. An epidemic of meningococcal infection in Vietnam (southern provinces). Bull World Health Organ. 1981;59(4):585-90. PMid:6797748

Berlucchi G. The origin of the term plasticity in the neurosciences: Ernesto Lugaro and chemical synaptic transmission. J Hist Neurosci. 2002;11(3):305-9. https://doi.org/10.1076/jhin.11.3.305.10396 PMid:12481483 DOI: https://doi.org/10.1076/jhin.11.3.305.10396

Mateos-Aparicio P, Rodríguez-Moreno A. The impact of studying brain plasticity. Front Cell Neurosci. 2019;13(66):66. DOI: https://doi.org/10.3389/fncel.2019.00066

Mansvelder HD, Verhoog MB, Goriounova NA, editors. Synaptic Plasticity in Human Cortical Circuits: Cellular Mechanisms of Learning and Memory in the Human Brain? 2019. Great Britain, Amsterdam: Elsevier Science B.V; 2019. DOI: https://doi.org/10.1016/j.conb.2018.06.013

Berlucchi G, Buchtel HA. Neuronal plasticity: Historical roots and evolution of meaning. Exp Brain Res. 2009;192(3):307-19. https://doi.org/10.1007/s00221-008-1611-6 PMid:19002678 DOI: https://doi.org/10.1007/s00221-008-1611-6

Beisteiner R, Matt E. Brain plasticity in fMRI and DTI. In: Stippich C, editor. Clinical Functional MRI: Presurgical Functional Neuroimaging. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 289-311. DOI: https://doi.org/10.1007/978-3-662-45123-6_11

Singh A, Trevick S. The epidemiology of global epilepsy. Neurol Clin. 2016;34(4):837-47. https://doi.org/10.1016/j.ncl.2016.06.015 PMid:27719996 DOI: https://doi.org/10.1016/j.ncl.2016.06.015

Lam VD. Lesion Assessment of Corticospinal Tracts and Some Indices of Diffusion Tensor Imaging (DTI) in Association with Motor Function on Cerebral Infarction Patients, PhD Thesis. Hanoi: University of Calgary’s Digital Repository; 2019.

Kreilkamp BA, Weber B, Richardson MP, Keller SS. Automated tractography in patients with temporal lobe epilepsy using TRActs constrained by underlying anatomy (TRACULA). Neuroimage. Clinical. 2017;14:67-76. https://doi.org/10.1016/j.nicl.2017.01.003 PMid:28138428 DOI: https://doi.org/10.1016/j.nicl.2017.01.003

Mårtensson J, Lätt J, Åhs F, Fredrikson M, Söderlund H, Schiöth HB, et al. Diffusion tensor imaging and tractography of the white matter in normal aging: The rate-of-change differs between segments within tracts. Magn Reson Imaging. 2018;45:113-9. https://doi.org/10.1016/j.mri.2017.03.007 PMid:28359912 DOI: https://doi.org/10.1016/j.mri.2017.03.007

Kamali A, Kramer LA, Butler IJ, Hasan KM, Kamali A, Kramer LA. Diffusion tensor tractography of the somatosensory system in the human brainstem: Initial findings using high isotropic spatial resolution at 3.0 T. Eur Radiol. 2009;19(6):1480-8. https://doi.org/10.1007/s00330-009-1305-x PMid:19189108 DOI: https://doi.org/10.1007/s00330-009-1305-x

Inano S, Takao H, Hayashi N, Abe O, Ohtomo K. Effects of age and gender on white matter integrity. AJNR Am J Neuroradiol. 2011;32(11):2103-9. https://doi.org/10.3174/ajnr.A2785 PMid:21998104 DOI: https://doi.org/10.3174/ajnr.A2785

Downloads

Published

2022-03-21

How to Cite

1.
Lam K, Nguyen PT, Anh LV, Lien T. Blended Motor-Sensory Nerve Bundles on Diffused Tensor Imaging: Evidence of Brain Plasticity in a Patient with 36-year Sequelae from Encephalitis. Open Access Maced J Med Sci [Internet]. 2022 Mar. 21 [cited 2024 Apr. 18];10(C):126-32. Available from: https://oamjms.eu/index.php/mjms/article/view/8643

Issue

Section

Case Report in Internal Medicine

Categories

Similar Articles

You may also start an advanced similarity search for this article.