Genetic Study of Chemokine Ligand 1 in Colorectal Carcinoma using Quantitative Real-Time PCR


  • Athraa Alshimerry Department of Pathology, College of Medicine, University of Babylon, Babylon, Iraq
  • Dalia Amer Khudhair Department of Pathology, College of Medicine, University of Babylon, Babylon, Iraq
  • Roaa Salih Mahdi Department of Pathology, College of Medicine, University of Babylon, Babylon, Iraq



Chemokine ligand 1, Colonic cancer, Quantitative real-time PCRs


Background: Carcinoma of colon is one of the prevalence carcinoma in the world and it is the most important cause of death in Western countries. The disease process is multifactorial; with etiology include inflammatory conditions of the digestive tract, environmental liableness and genetic factors. Chemokine Ligand1 was share in several mechanisms such as inflammatory process, chemo attraction, and others. Objective: The current study was conducted to analyze gene expression level of chemokine ligand 1 in colonic carcinoma and to deliberate the participant of it as genetic factors in its evolving and prognosis. Material and method: Chemokine Ligand1 gene expression level was evaluated in formalin-fixed, paraffin embedded tissue blocks that is retrospectively collected from 40 patients (8 women and 32 men) with carcinoma, and 40 patients of normal colonic tissues as control specimen by using Real-Time PCR. Results: The expression of Chemokine ligand 1 gene were established as 12.4112 folds in carcinoma specimen in relation to control tissue (1.3492).  Chemokine ligand 1 genes were found to be over-expressed in advanced stage tumors and elderly patients. Conclusions: Chemokine ligand1 can be considered as a recent biomarker and the possibility to use it as therapeutic target in the treatment of colonic carcinoma.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018;68(1):7-30. PMid:29313949 DOI:

Heurta S. Recent advances in the molecular diagnosis and prognosis of colorectal cancer. Expert Rev Mol Diagn. 2008;8(3):277-88. PMid:18598107 DOI:

Rosia J. Rosai and Ackerman’s Surgical Pathology. 10th ed., Vol. 17. Campus Outreach St. Louis. CV Mosby Year Book Inc.; 2011. p. 1247-86. Available from: books/rosai-and-ackermans-surgical-pathology-10e/rosai/978- 81-312-2984-2. [Last accessed on 2021 Dec 15]. DOI:

Allegra CJ, Paik S, Colangelo LH, Parr AL, Kirsch I, Kim G, et al. Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with dukes’ B and C colon cancer: A national cancer institute-national surgical adjuvant breast and bowel project collaborative study. J Clin Oncol. 2003;21(2):241-50. PMid:12525515 DOI:

Oladipo O, Conlon S, O’Grady A, Purcell C, Wilson C, Maxwell PJ, et al. The expression and prognostic impact of CXC-chemokines in stage II and III colorectal cancer epithelial and stromal tissue. Br J Cancer. 2011;104(3):480-7. PMid:21285972 DOI:

Emmanouil G, Ayiomamitis G, Zizi-Sermpetzoglou A, Tzardi M, Moursellas A, Voumvouraki A, et al. Angiodrastic chemokines in colorectal cancer: Clinicopathological correlations. Anal Cell Pathol (Amst). 2018;2018:1616973. PMid:29850390 DOI:

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30. PMid:6742998 DOI:

Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57(1):43-66. PMid:17237035 DOI:

Monteagudo C, Pellín-Carcelén A, Martín JM, Ramos D. Role of chemokines in melanoma progression. Actas Dermosifiliogr. 2011;102(7):498-504. PMid:21531362 DOI:

Liu Z, Yang L, Xu J, Zhang X, Wang B. Enhanced expression and clinical significance of chemokine receptor CXCR2 in hepatocellular carcinoma. J Surg Res. 2011;166(2):241-6. PMid:20018298 DOI:

Miyake M, Lawton A, Goodison S, Urquidi V, Rosser CJ. Chemokine (C-X-C motif) ligand 1 (CXCL1) protein expression is increased in high-grade prostate cancer. Pathol Res Pract. 2014;210(2):74-8. PMid:24252309 DOI:

Lai TH, Wu PH, Wu WB. Involvement of NADPH oxidase and NF-κB activation in CXCL1 induction by vascular endothelial growth factor in human endometrial epithelial cells of patients with adenomyosis. J Reprod Immunol. 2016;118:61-9. PMid:27665197 DOI:

Miyake M, Lawton A, Goodison S, Urquidi V, Gomes-Giacoia E, Zhang G, et al. Chemokine (C-X-C) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers. BMC Cancer. 2013;13:322. DOI:

Verbeke H, Struyf S, Laureys G, Van Damme J. The expression and role of CXC chemokines in colorectal cancer. Cytokine Growth Factor Rev. 2011;22(5-6):345-58. PMid:22000992 DOI:

Sawant KV, Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, et al. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci Rep. 2016;6:33123. PMid:27625115 DOI:

Koelzer VH, Lugli A, Dawson H, Hädrich M, Berger MD, Borner M, et al. CD8/CD45RO T-cell infiltration in endoscopic biopsies of colorectal cancer predicts nodal metastasis and survival. J Transl Med. 2014;12:81. PMid:24679169 DOI:

Kuo PL, Shen KH, Hung SH, Hsu YL. CXCL1/GROα _increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF κB/HDAC1 epigenetic regulation. Carcinogenesis. 2012;33(2):2477-87. PMid:23027620 DOI:

Carvalho B, Sillars-Hardebol AH, Postma C, Mongera S, Terhaar Sive Droste J, Obulkasim A, et al. Colorectal adenoma to carcinoma progression is accompanied by changes in gene expression associated with ageing, chromosomal instability, and fatty acid metabolism. Cell Oncol (Dordr). 2012;35(1):53-63. PMid:22278361 DOI:

Xu JZ, Wong CW. Hunting for robust gene signature from cancer profiling data: Sources of variability, different interpretations, and recent methodological developments. Cancer Lett. 2010;296(1):9-16. DOI:

Velenik V, Ocvirk J, Oblak I, Anderluh F. A phase II study of cetuximab, capecitabine and radiotherapy in neoadjuvant treatment of patients with locally advanced resectable rectal cancer. Eur J Surg Oncol. 2010;36(3):244-50. PMid:20042310 DOI:

Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006;203(4):941-51. PMid:16567391 DOI:

Martyna B, Małgorzata MW, Nikola Z, Beniamin G, Urszula M, Grażyna J. Expression profile of genes associated with the proteins degradation pathways in colorectal adenocarcinoma. Curr Pharm Biotechnol. 2019;20(7):551-61. 174/1389201020666190516090744 PMid:31096896 DOI:

Kita H, Hikichi Y, Hikami K, Tsuneyama K, Cui ZG, Osawa H, et al. Differential gene expression between flat adenoma and normal mucosa in the colon in a microarray analysis. J Gastroenterol. 2006;41(11):1053-63. PMid:17160516 DOI:

Sillars-Hardebol AH, Carvalho B, De Wit M, Postma C, Delis-van Diemen PM, Mongera S, et al. Identification of key genes for carcinogenic pathways associated with colorectal adenoma-to-carcinoma progression. Tumour Biol. 2010;31(2):89-96. PMid:20358421 DOI:

Zhuo C, Wu X, Li J, Hu D, Jian J, Chen C, et al. Chemokine (C-X-C Motif) Ligand 1 (CXCL1) is associated with tumorprogression and poor prognosis in patients with colorectal cancer. Biosci Rep. 2018;38(4):580. PMid:29784873 DOI:




How to Cite

Alshimerry A, Khudhair DA, Mahdi RS. Genetic Study of Chemokine Ligand 1 in Colorectal Carcinoma using Quantitative Real-Time PCR. Open Access Maced J Med Sci [Internet]. 2022 Mar. 10 [cited 2023 Mar. 28];10(A):656-60. Available from: