Genetic Study of Chemokine Ligand 1 in Colorectal Carcinoma using Quantitative Real-Time PCR

Authors

  • Athraa Alshimerry Department of Pathology, College of Medicine, University of Babylon, Babylon, Iraq
  • Dalia Amer Khudhair Department of Pathology, College of Medicine, University of Babylon, Babylon, Iraq
  • Roaa Salih Mahdi Department of Pathology, College of Medicine, University of Babylon, Babylon, Iraq

DOI:

https://doi.org/10.3889/oamjms.2022.8645

Keywords:

Chemokine ligand 1, Colonic cancer, Quantitative real-time PCRs

Abstract

Background: Carcinoma of colon is one of the prevalence carcinoma in the world and it is the most important cause of death in Western countries. The disease process is multifactorial; with etiology include inflammatory conditions of the digestive tract, environmental liableness and genetic factors. Chemokine Ligand1 was share in several mechanisms such as inflammatory process, chemo attraction, and others. Objective: The current study was conducted to analyze gene expression level of chemokine ligand 1 in colonic carcinoma and to deliberate the participant of it as genetic factors in its evolving and prognosis. Material and method: Chemokine Ligand1 gene expression level was evaluated in formalin-fixed, paraffin embedded tissue blocks that is retrospectively collected from 40 patients (8 women and 32 men) with carcinoma, and 40 patients of normal colonic tissues as control specimen by using Real-Time PCR. Results: The expression of Chemokine ligand 1 gene were established as 12.4112 folds in carcinoma specimen in relation to control tissue (1.3492).  Chemokine ligand 1 genes were found to be over-expressed in advanced stage tumors and elderly patients. Conclusions: Chemokine ligand1 can be considered as a recent biomarker and the possibility to use it as therapeutic target in the treatment of colonic carcinoma.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2018;68(1):7-30. https://doi.org/10.3322/caac.21442 PMid:29313949 DOI: https://doi.org/10.3322/caac.21442

Heurta S. Recent advances in the molecular diagnosis and prognosis of colorectal cancer. Expert Rev Mol Diagn. 2008;8(3):277-88. https://doi.org/10.1586/14737159.8.3.277 PMid:18598107 DOI: https://doi.org/10.1586/14737159.8.3.277

Rosia J. Rosai and Ackerman’s Surgical Pathology. 10th ed., Vol. 17. Campus Outreach St. Louis. CV Mosby Year Book Inc.; 2011. p. 1247-86. Available from: https://www.elsevier.com/ books/rosai-and-ackermans-surgical-pathology-10e/rosai/978- 81-312-2984-2. [Last accessed on 2021 Dec 15]. https://doi.org/10.1016/s0046-8177(04)00455-1 DOI: https://doi.org/10.1016/S0046-8177(04)00455-1

Allegra CJ, Paik S, Colangelo LH, Parr AL, Kirsch I, Kim G, et al. Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with dukes’ B and C colon cancer: A national cancer institute-national surgical adjuvant breast and bowel project collaborative study. J Clin Oncol. 2003;21(2):241-50. https://doi.org/10.1200/jco.2003.05.044 PMid:12525515 DOI: https://doi.org/10.1200/JCO.2003.05.044

Oladipo O, Conlon S, O’Grady A, Purcell C, Wilson C, Maxwell PJ, et al. The expression and prognostic impact of CXC-chemokines in stage II and III colorectal cancer epithelial and stromal tissue. Br J Cancer. 2011;104(3):480-7. https://doi.org/10.1038/sj.bjc.6606055 PMid:21285972 DOI: https://doi.org/10.1038/sj.bjc.6606055

Emmanouil G, Ayiomamitis G, Zizi-Sermpetzoglou A, Tzardi M, Moursellas A, Voumvouraki A, et al. Angiodrastic chemokines in colorectal cancer: Clinicopathological correlations. Anal Cell Pathol (Amst). 2018;2018:1616973. https://doi.org/10.1155/2018/1616973 PMid:29850390 DOI: https://doi.org/10.1155/2018/1616973

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30. https://doi.org/10.3322/caac.21332 PMid:6742998 DOI: https://doi.org/10.3322/caac.21332

Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57(1):43-66. https://doi.org/10.3322/canjclin.57.1.43 PMid:17237035 DOI: https://doi.org/10.3322/canjclin.57.1.43

Monteagudo C, Pellín-Carcelén A, Martín JM, Ramos D. Role of chemokines in melanoma progression. Actas Dermosifiliogr. 2011;102(7):498-504. https://doi.org/10.1016/j.ad.2011.03.004 PMid:21531362 DOI: https://doi.org/10.1016/j.adengl.2011.03.004

Liu Z, Yang L, Xu J, Zhang X, Wang B. Enhanced expression and clinical significance of chemokine receptor CXCR2 in hepatocellular carcinoma. J Surg Res. 2011;166(2):241-6. https://doi.org/10.1016/j.jss.2009.07.014 PMid:20018298 DOI: https://doi.org/10.1016/j.jss.2009.07.014

Miyake M, Lawton A, Goodison S, Urquidi V, Rosser CJ. Chemokine (C-X-C motif) ligand 1 (CXCL1) protein expression is increased in high-grade prostate cancer. Pathol Res Pract. 2014;210(2):74-8. https://doi.org/10.1016/j.prp.2013.08.013 PMid:24252309 DOI: https://doi.org/10.1016/j.prp.2013.08.013

Lai TH, Wu PH, Wu WB. Involvement of NADPH oxidase and NF-κB activation in CXCL1 induction by vascular endothelial growth factor in human endometrial epithelial cells of patients with adenomyosis. J Reprod Immunol. 2016;118:61-9. https://doi.org/10.1016/j.jri.2016.08.011 PMid:27665197 DOI: https://doi.org/10.1016/j.jri.2016.08.011

Miyake M, Lawton A, Goodison S, Urquidi V, Gomes-Giacoia E, Zhang G, et al. Chemokine (C-X-C) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers. BMC Cancer. 2013;13:322. https://doi.org/10.1186/1471-2407-13-322 DOI: https://doi.org/10.1186/1471-2407-13-322

Verbeke H, Struyf S, Laureys G, Van Damme J. The expression and role of CXC chemokines in colorectal cancer. Cytokine Growth Factor Rev. 2011;22(5-6):345-58. https://doi.org/10.1016/j.cytogfr.2011.09.002 PMid:22000992 DOI: https://doi.org/10.1016/j.cytogfr.2011.09.002

Sawant KV, Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, et al. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci Rep. 2016;6:33123. https://doi.org/10.1038/srep33123 PMid:27625115 DOI: https://doi.org/10.1038/srep33123

Koelzer VH, Lugli A, Dawson H, Hädrich M, Berger MD, Borner M, et al. CD8/CD45RO T-cell infiltration in endoscopic biopsies of colorectal cancer predicts nodal metastasis and survival. J Transl Med. 2014;12:81. https://doi.org/10.1186/1479-5876-12-81 PMid:24679169 DOI: https://doi.org/10.1186/1479-5876-12-81

Kuo PL, Shen KH, Hung SH, Hsu YL. CXCL1/GROα _increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF κB/HDAC1 epigenetic regulation. Carcinogenesis. 2012;33(2):2477-87. https://doi.org/10.1093/carcin/bgs299 PMid:23027620 DOI: https://doi.org/10.1093/carcin/bgs299

Carvalho B, Sillars-Hardebol AH, Postma C, Mongera S, Terhaar Sive Droste J, Obulkasim A, et al. Colorectal adenoma to carcinoma progression is accompanied by changes in gene expression associated with ageing, chromosomal instability, and fatty acid metabolism. Cell Oncol (Dordr). 2012;35(1):53-63. https://doi.org/10.1007/s13402-011-0065-1 PMid:22278361 DOI: https://doi.org/10.1007/s13402-011-0065-1

Xu JZ, Wong CW. Hunting for robust gene signature from cancer profiling data: Sources of variability, different interpretations, and recent methodological developments. Cancer Lett. 2010;296(1):9-16. https://doi.org/10.1016/j.canlet.2010.05.008 DOI: https://doi.org/10.1016/j.canlet.2010.05.008

Velenik V, Ocvirk J, Oblak I, Anderluh F. A phase II study of cetuximab, capecitabine and radiotherapy in neoadjuvant treatment of patients with locally advanced resectable rectal cancer. Eur J Surg Oncol. 2010;36(3):244-50. https://doi.org/10.1016/j.ejso.2009.12.002 PMid:20042310 DOI: https://doi.org/10.1016/j.ejso.2009.12.002

Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, et al. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006;203(4):941-51. https://doi.org/10.1084/jem.20052124 PMid:16567391 DOI: https://doi.org/10.1084/jem.20052124

Martyna B, Małgorzata MW, Nikola Z, Beniamin G, Urszula M, Grażyna J. Expression profile of genes associated with the proteins degradation pathways in colorectal adenocarcinoma. Curr Pharm Biotechnol. 2019;20(7):551-61. https://doi.org/10.2 174/1389201020666190516090744 PMid:31096896 DOI: https://doi.org/10.2174/1389201020666190516090744

Kita H, Hikichi Y, Hikami K, Tsuneyama K, Cui ZG, Osawa H, et al. Differential gene expression between flat adenoma and normal mucosa in the colon in a microarray analysis. J Gastroenterol. 2006;41(11):1053-63. https://doi.org/10.1007/s00535-006-1894-y PMid:17160516 DOI: https://doi.org/10.1007/s00535-006-1894-y

Sillars-Hardebol AH, Carvalho B, De Wit M, Postma C, Delis-van Diemen PM, Mongera S, et al. Identification of key genes for carcinogenic pathways associated with colorectal adenoma-to-carcinoma progression. Tumour Biol. 2010;31(2):89-96. https://doi.org/10.1007/s13277-009-0012-1 PMid:20358421 DOI: https://doi.org/10.1007/s13277-009-0012-1

Zhuo C, Wu X, Li J, Hu D, Jian J, Chen C, et al. Chemokine (C-X-C Motif) Ligand 1 (CXCL1) is associated with tumorprogression and poor prognosis in patients with colorectal cancer. Biosci Rep. 2018;38(4):580. https://doi.org/10.1042/bsr20180580 PMid:29784873 DOI: https://doi.org/10.1042/BSR20180580

Downloads

Published

2022-03-10

How to Cite

1.
Alshimerry A, Khudhair DA, Mahdi RS. Genetic Study of Chemokine Ligand 1 in Colorectal Carcinoma using Quantitative Real-Time PCR. Open Access Maced J Med Sci [Internet]. 2022 Mar. 10 [cited 2024 Nov. 21];10(A):656-60. Available from: https://oamjms.eu/index.php/mjms/article/view/8645