Erythroblasts in the Vessels of the Placenta – An Independent Factor of Chronic Hypoxic Damage to the Fetus

Authors

DOI:

https://doi.org/10.3889/oamjms.2022.8745

Keywords:

Erythroblasts, Chronic hypoxia, Fetal distress

Abstract

The aim is a comparative histological study of the relative number of fetal erythroblasts in the vessels of the placentas from a full term pregnancy with a low and high risk of fetal hypoxic damage.

Material and methods. Based on data on the course of pregnancy, the state of health of the mother and the fetus/newborn, as well as histological examination of the placenta, 388 archived placenta tissue samples were selected in 2 groups: a high risk group for chronic hypoxic damage to the fetus and a group without clinical and laboratory signs of fetal/newborn hypoxia. The relationship between the number of erythroblasts in the vessels of the placenta and chronic hypoxic damage to the fetus was analyzed.

Results: The high risk of chronic hypoxic fetal damage is higher for placentas with ≥8 fetal erythroblasts in chorionic villi vessels (OR=3.175; 95% CI =1.921-5.248, p<0.001), with maternal vascular malperfusion (OR=2.798; 95% CI = 1.506-5.164, p=0.001) and combined (cross) placental lesions (OR=2.245; 95%CI=1.246-4.046, p =0.007) with damage of ≥30% of placental tissue.

Conclusion: 8 or more fetal erythroblasts in the lumen of the vessels of the placenta is an additional independent factor in chronic hypoxic damage to the fetus. These results are of practical importance for identifying a group of newborns with a high risk of chronic hypoxic damage in the perinatal period and stratification of the risk group in the postnatal period in order to reduce infant morbidity and mortality.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Bernstein IM, Horbar JD, Badger GJ, Ohlsson A, Golan A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network Am J Obstet Gynecol. 2000;182(1):198-206. https://doi.org/10.1016/s0002-9378(00)70513-8 PMid:10649179 DOI: https://doi.org/10.1016/S0002-9378(00)70513-8

Barinova IV, Savel’ev SV, Kotov YU. Osobennosti morfologicheskoj i prostranstvennoj struktury placenty pri antenatal’noj gipoksii ploda. In: Rossijskij Mediko-biologicheskij Vestnik Imeni Akademika I.P. Pavlova. ???: ???; 2015. p. 25-9. DOI: https://doi.org/10.17816/PAVLOVJ2015125-31

Gluhovec BI, Ivanova LA. Klinicheskoe znachenie i metodologicheskie osnovy makroskopicheskogo issledovaniya posledov novorozhdennyh. Arhiv Patol. 2010;6:47-49.

Gillman MW. Mothers, babies, and disease in later life. J R Soc Med. 1995;310(6971):68-9. DOI: https://doi.org/10.1136/bmj.310.6971.68a

Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of In Utero and Early-Life Conditions on Adult Health and Disease. N Engl J Med. 2008;359(1):61-73. https://doi.org/10.1056/NEJMra0708473 PMid:18596274 DOI: https://doi.org/10.1056/NEJMra0708473

Meyer K, Zhang L. Fetal programming of cardiac function and disease. Reprod Sci. 2007;14(3):209-16. https://doi.org/10.1177/1933719107302324 PMid:17636233 DOI: https://doi.org/10.1177/1933719107302324

Gluhovec BI, Rec YU. Kompensatornye i patologicheskie reakcii ploda pri hronicheskoj fetoplacentarnoj nedostatochnosti. Arhiv Patol. 2008;2(70):S59-62.

Webster WS, Abela D. The effect of hypoxia in development. Birth Defects Res C Embryo Today. 2007;81(3):215-28. https://doi.org/10.1002/bdrc.20102 PMid:17963271 DOI: https://doi.org/10.1002/bdrc.20102

Zhang L. Prenatal hypoxia and cardiac programming. J Soc Gynecol Investig. 2005;12(1):2-13. https://doi.org/10.1016/j.jsgi.2004.09.004 PMid:15629664 DOI: https://doi.org/10.1016/j.jsgi.2004.09.004

Rosario GX, Konno T, Soares MJ. Maternal hypoxia activates endovascular trophoblast cell invasion. Dev Biol. 2008;314(2):362-75. https://doi.org/10.1016/j.ydbio.2007.12.007 PMid:18199431 DOI: https://doi.org/10.1016/j.ydbio.2007.12.007

Ain R, Dai G, Dunmore JH, Godwin AR, Soares MJ. A prolactin family paralog regulates reproductive adaptations to a physiological stressor. Proc Natl Acad Sci U S A. 2004;101(47):16543-8. https://doi.org/10.1073/pnas.0406185101 PMid:15545614 DOI: https://doi.org/10.1073/pnas.0406185101

Nuzzo AM, Camm EJ, Sferruzzi-Perri AN. Placental adaptation to early-onset hypoxic pregnancy and mitochondria-targeted antioxidant therapy in a rodent model. Am J Pathol. 2018;188(12):2704-16. https://doi.org/10.1016/j.ajpath.2018.07.027 PMid:30248337 DOI: https://doi.org/10.1016/j.ajpath.2018.07.027

Ernst LM. Maternal vascular malperfusion of the placental bed. APMIS. 2018;126:551-60. https://doi.org/10.1111/apm.12833 PMid:30129127 DOI: https://doi.org/10.1111/apm.12833

Redline RW, Ravishankar S. Fetal vascular malperfusion, an update. APMIS. 2018;126:561-9. https://doi.org/10.1111/apm.12849 PMid:30129125 DOI: https://doi.org/10.1111/apm.12849

Khong TY, Mooney EE., Ariel I, Balmus NC, Boyd TK. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016;140(7):698-713. https://doi.org/10.5858/arpa.2015-0225-CC PMid:27223167 DOI: https://doi.org/10.5858/arpa.2015-0225-CC

McCarthy JM, Gilbert-Barness E, Tsibris JC, Spellacy WN. Are placental chorionic capillary nucleated red blood cell counts useful compared to umbilical cord blood tests? Fetal Diagn Ther. 2007;22(2):121-3. https://doi.org/10.1159/000097109 PMid:17135757 DOI: https://doi.org/10.1159/000097109

Boyd T, Redline RW. Pathology of the placenta. In: Potter’s Pathology of the Fetus, Infant and Child. Philadelphia, PA: Mosby, Elsevier; 2007. p. 645-94.

Baergen RN. Manual of Benirschke and Kaufmann’s Pathology of the Human Placenta. New York: Springer; 2005.

de Laat MW, van der Meij JJ, Visser GH, Franx A, Nikkels PG. Hypercoiling of the umbilical cord and placental maturation defect: Associated pathology? Pediatr Dev Pathol. 2007;10(4):293-9. https://doi.org/10.2350/06-01-0015.1 PMid:17638422 DOI: https://doi.org/10.2350/06-01-0015.1

Altshuler G. A conceptual approach to placental pathology and pregnancy outcome. Semin Diagn Pathol. 1993;10(3):204-21. PMid:8210772

Bryant C, Beall M, McPhaul L, Fortson W, Ross M. Do placental sections accurately reflect umbilical cord nucleated red blood cell and white blood cell differential counts? J Matern Fetal Neonatal Med. 2006;19(2):105-8. https://doi.org/10.1080/15732470500441306 PMid:16581606 DOI: https://doi.org/10.1080/15732470500441306

Stanek J. Hypoxic patterns of placental injury: А review. Arch Pathol Lab Med. 2013;137:706-20. https://doi.org/10.5858/arpa.2011-0645-RA PMid:23627456 DOI: https://doi.org/10.5858/arpa.2011-0645-RA

Metodicheskie Rekomendacii po Postroeniyu Diagnoza u Umershih Detej/Plodov I Po Issledovaniyu Posledov/Pod Red. A.V. Cinzerlinga. Sankt-Peterburg: Zelenogorsk; 1995. p. 21.

Vogel M. Atlas Der Morphologischen Plazentadiagnostik. Berlin: Springer. 1996. p. 314. DOI: https://doi.org/10.1007/978-3-642-80083-2

Benirschke K, Kaufmann P, Baergen R. Pathology of the Human Placenta. New York: Springer; 2006. p. 380-451.

Milovanov AP. O racional’noj morfologicheskoj klassifikacii narushenij sozrevaniya placenty. Arhiv Patol. 1991;12:3-5.

Downloads

Published

2022-03-21

How to Cite

1.
Kostyleva O, Stabayeva L, Tussupbekova M, Mukhammad I, Kotov Y, Kossitsyn D, Zhuravlev SN. Erythroblasts in the Vessels of the Placenta – An Independent Factor of Chronic Hypoxic Damage to the Fetus. Open Access Maced J Med Sci [Internet]. 2022 Mar. 21 [cited 2024 Nov. 21];10(A):1151-6. Available from: https://oamjms.eu/index.php/mjms/article/view/8745

Similar Articles

You may also start an advanced similarity search for this article.