Combination of Nanocrystalline Hydroxyapatite and Injectable Platelet-Rich Fibrin on Bone Graft Materials for Alveolar Bone Preservation

Authors

  • Andries Pascawinata Department of Oral Surgery, Faculty of Dentistry, Baiturrahmah University, Padang, Indonesia; Department of Biomedical Science, Andalas University, Padang, Indonesia
  • Abu Bakar Department of Oral Medicine, Baiturrahmah University, Padang, Indonesia https://orcid.org/0000-0002-3425-9825

DOI:

https://doi.org/10.3889/oamjms.2022.8762

Keywords:

Nanocrystalline, Hydroxyapatite, Injectable platelet-rich fibrin, Bone graft, Alveolar bone preservation

Abstract

Alveolar bone resorption is one of post-extraction complications with a reduction in the dimensions and quality of the alveolar bone, which will make it challenging to install dental implants in the future. The resorption can be prevented by preserving the alveolar bone using bone grafts. Nanocrystalline hydroxyapatite (HA) is a widely developed material as a bone graft. However, there are still some limitations because it only has osteoconductive properties. The addition of injectable platelet-rich fibrin to HA can increase this material’s osteoinductive, antibacterial, and anti-inflammatory properties, making it suitable for use as bone graft material for the preservation of alveolar bone.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Horowitz R, Holtzclaw D, Rosen PS. A review on alveolar ridge preservation following tooth extraction. J Evid Based Dent Pract. 2012;12:149-60. https://doi.org/10.1016/S1532-3382(12)70029-5 PMid:23040345 DOI: https://doi.org/10.1016/S1532-3382(12)70029-5

Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of postextractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res. 2011;23(Suppl 5):1-21. https://doi.org/10.1111/j.1600-0501.2011.02375.x PMid:22211303 DOI: https://doi.org/10.1111/j.1600-0501.2011.02375.x

Darby I, Chen S, De Poi R. Ridge preservation: What is it and when should it be considered. Aust Dent J. 2008;53:11-21. https://doi.org/10.1111/j.1834-7819.2007.00008.x PMid:18304236 DOI: https://doi.org/10.1111/j.1834-7819.2007.00008.x

Bassir S, Alhareky M, Wangsrimongkol B, Jia Y, Karimbux N. Systematic review and meta-analysis of hard tissue outcomes of alveolar ridge preservation. Int J Oral Maxillofac Implants. 2018;33:979-94. https://doi.org/10.11607/jomi.6399 PMid:30231083 DOI: https://doi.org/10.11607/jomi.6399

Zhou F, Zheng X, Xie M, Mo A, Wu H. Radiographic and histological evaluation of the healing of extraction sockets filled with bovine-derived xenograft: An experimental study in rats. Implant Dent. 2017;26(3):400-4. https://doi.org/10.1097/ID.0000000000000573 PMid:28301383 DOI: https://doi.org/10.1097/ID.0000000000000573

Titsinides, S., Agrogiannis, G., Karatzas, T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Jpn Dent Sci Rev. 2019;55(1):26-32. https://doi.org/10.1016/j.jdsr.2018.09.003 PMid:30733842 DOI: https://doi.org/10.1016/j.jdsr.2018.09.003

Mateus PA, Ferraz MP, Monteiro FJ. Nanoparticles of hydroxyapatite: Preparation, characterization and cellular approach an overview. Rev Mutis. 2013;3(2):43-56. https://doi.org/10.21789/22561498.884 DOI: https://doi.org/10.21789/22561498.884

Pokhrel S. Hydroxyapatite: Preparation, properties and its biomedical applications. Adv Chem Eng Sci. 2018;8:225-40. https://doi.org/10.4236/aces.2018.84016 DOI: https://doi.org/10.4236/aces.2018.84016

Khotib J, Lasandara CS, Samirah S, Budiatin AS. Acceleration of bone fracture healing through the use of natural bovine hydroxyapatite implant on bone defect animal model. Folia Med Indones. 2019;55:176. https://doi.org/10.20473/fmi.v55i3.15495 DOI: https://doi.org/10.20473/fmi.v55i3.15495

Kasaj A, Willershausen B, Reichert C, Röhrig B, Smeets R, Schmidt M. Ability of nanocrystalline hydroxyapatite paste to promote human periodontal ligament cell proliferation. J Oral Sci. 2008;50:279-85. https://doi.org/10.2334/josnusd.50.279 PMid:18818463 DOI: https://doi.org/10.2334/josnusd.50.279

Sándor GK. The Minimization of Morbidity in Cranio-maxillofacial Osseous Reconstruction: Bone Graft Harvesting and Coralderived Granules as a Bone Graft Substitute. Finland: University of Oulu; 2003.

Zipfel GJ, Guiot BH, Fessler RG. Bone grafting. Neurosurg Focus. 2003;14:1-8. https://doi.org/10.1016/S0195-5616(87)50078-X. DOI: https://doi.org/10.3171/foc.2003.14.2.9

Jo SH, Kim YK, Choi YH. Histological evaluation of the healing process of various bone graft materials after engraftment into the human body. Materials (Basel). 2018;11(5):714. https://doi.org/10.3390/ma11050714 PMid:29724045 DOI: https://doi.org/10.3390/ma11050714

Graham S, Leonidou A, Lester M, Heliotis M, Mantalaris A, Tsiridis E. Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin Investig Drugs. 2009;18(11):1633-54. https://doi.org/10.1517/13543780903241607 PMid:19747084 DOI: https://doi.org/10.1517/13543780903241607

Liu Z, Jin H, Xie Q, Jiang Z, Guo S, Li Y, et al. Controlled release strategies for the combination of fresh and lyophilized platelet-rich fibrin on bone tissue regeneration. Biomed Res Int. 2019;2019:4923767. PMid:31223618 DOI: https://doi.org/10.1155/2019/4923767

Kapse S, Surana S, Satish M, Hussain SE, Vyas S, Thakur D. Autologous platelet-rich fibrin: Can it secure a better healing? Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;127(1):8-18. https://doi.org/10.1016/j.oooo.2018.08.010 PMid:30287202 DOI: https://doi.org/10.1016/j.oooo.2018.08.010

Choukroun J, Ghanaati S. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients’ own inflammatory cells, platelets and growth factors: The first introduction to the low speed centrifugation concept. Eur J Trauma Emerg Surg. 2017;44:87-95. https://doi.org/10.1007/s00068-017-0767-9 PMid:28283682 DOI: https://doi.org/10.1007/s00068-017-0767-9

Miron RJ, Zucchelli G, Pikos MA, Salama M, Lee S, Guillemette V, et al. Use of platelet-rich fibrin in regenerative dentistry: A systematic review. 2017;21(6):1913-27, https://doi.org/10.1007/s00784-017-2133-z PMid:28551729 DOI: https://doi.org/10.1007/s00784-017-2133-z

Shah R, Gowda TM, Thomas R, Kumar T, Mehta DS. Biological activation of bone grafts using injectable platelet-rich fibrin. J Prosthet Dent. 2018;121:391-3. https://doi.org/10.1016/j.prosdent.2018.03.027 PMid:30409723 DOI: https://doi.org/10.1016/j.prosdent.2018.03.027

Jasmine S, Thangavelu A, Janarthanan K, Krishnamoorthy R, Alshatwi AA. Antimicrobial and antibiofilm potential of injectable platelet rich fibrin a second-generation platelet concentrate against biofilm producing oral Staphylococcus isolates. Saudi J Biol Sci. 2019;27(1):41-6. https://doi.org/10.1016/j.sjbs.2019.04.012 PMid:31889815 DOI: https://doi.org/10.1016/j.sjbs.2019.04.012

Thanasrisuebwong P, Surarit R, Bencharit S. Influence of fractionation methods on physical and biological properties of injectable platelet-rich fibrin: An exploratory study. Int J Mol Sci. 2019;20:1-10. https://doi.org/10.3390/ijms20071657 PMid:30987117 DOI: https://doi.org/10.3390/ijms20071657

Zhang J, Yin C, Zhao Q, Zhao Z, Wang J, Miron RJ, et al. Anti-inflammation effects of injectable platelet-rich fibrin via macrophages and dendritic cells. J Biomed Mater Res A. 2020;108(1):61-8. https://doi.org/10.1002/jbm.a.36792 PMid:31449340 DOI: https://doi.org/10.1002/jbm.a.36792

Karde PA, Sethi KS, Mahale SA, Khedkar SU, Patil AG, Joshi CP. Comparative evaluation of platelet count and antimicrobial effi cacy of injectable platelet-rich fi brin with other platelet concentrates: An in vitro study. Indian Soc Periodontol. 2020;21(2):97-101. https://doi.org/10.4103/jisp.jisp PMid:29398852 DOI: https://doi.org/10.4103/jisp.jisp_201_17

Szcze A, Ho L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci. 2017;249:321-30. https://doi.org/10.1016/j.cis.2017.04.007 PMid:28457501 DOI: https://doi.org/10.1016/j.cis.2017.04.007

Stumbras A, Kuliesius P, Januzis G, Juodzbalys G. Alveolar ridge preservation after tooth extraction using different bone graft materials and autologous platelet concentrates: A systematic review. J Oral Maxillofac Res. 2019;10:e2. https://doi.org/10.5037/jomr.2019.10102 PMid:31069040 DOI: https://doi.org/10.5037/jomr.2019.10102

Al Yafi F, Alchawaf B, Nelson K. What is the optimum for alveolar ridge preservation? Dent Clin North Am. 2019;63(3):399-418. https://doi.org/10.1016/j.cden.2019.02.007 PMid:31097134 DOI: https://doi.org/10.1016/j.cden.2019.02.007

Rakhmatia YD. Carbonate apatite containing statin enhances bone formation in healing incisal extraction sockets in rats. Materials (Basel). 2018;11:1-15. https://doi.org/10.3390/ma11071201 PMid:30002343 DOI: https://doi.org/10.3390/ma11071201

Hung NN. Basic Knowledge of Bone Grafting. London: IntechOpen; 2012. p. 11-34. https://doi.org/10.5772/30442 DOI: https://doi.org/10.5772/30442

Kalfas, I. Principles of bone healing. Neurosurg Focus. 2001;10:E1. https://doi.org/10.3171/foc.2001.10.4.2 PMid:16732625 DOI: https://doi.org/10.3171/foc.2001.10.4.2

Stevenson S. Biology of bone grafts. Bone Regen Repair Biol Clin Appl. 1999;30:543-52. https://doi.org/10.1385/1-59259-863-3:057 DOI: https://doi.org/10.1016/S0030-5898(05)70107-3

Rolvien T, Barbeck M, Wenisch S, Amling M, Krause M. Cellular mechanisms responsible for success and failure of bone substitute materials. Int J Mol Sci. 2018;19:2893. https://doi.org/10.3390/ijms19102893 PMid:30249051 DOI: https://doi.org/10.3390/ijms19102893

Pilitsis JG, Lucas DR, Rengachary SS. Bone healing and spinal fusion. Neurosurg Focus. 2002;13:e1. https://doi.org/10.3171/foc.2002.13.6.2 PMid:15766227 DOI: https://doi.org/10.3171/foc.2002.13.6.2

Nicholson JW. The Chemistry of Medical and Dental Materials. Canterbury, United Kingdom: RSOC; 2002.

Gonda Y, Ioku K, Shibata Y, Okuda T, Kawachi G, Kamitakahara M, et al. Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts. Biomaterials. 2009;30:4390-400. https://doi.org/10.1016/j.biomaterials.2009.05.002 DOI: https://doi.org/10.1016/j.biomaterials.2009.05.002

Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006;27(14):2798-805. https://doi.org/10.1016/j.biomaterials.2005.12.008 PMid:16430957 DOI: https://doi.org/10.1016/j.biomaterials.2005.12.008

Pascawinata A, Prihatiningsih, Rahardjo BD. Perbandingan Proses Penyembuhan Tulang pada Implantasi Hidroksiapatit Nanokristalin dengan Hidroksiapatit Mikrokristalin (Kajian Pada Tulang Tibia Kelinci), Gadjah Mada; 2013.

Nandi SK, Kundu B, Ghosh SK, De DK, Basu D. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J Vet Sci. 2008;9:183-91. https://doi.org/10.4142/jvs.2008.9.2.183 PMid:18487940 DOI: https://doi.org/10.4142/jvs.2008.9.2.183

Bayani M, Torabi S, Shahnaz A, Pourali M. Main properties of nanocrystalline hydroxyapatite as a bone graft material in treatment of periodontal defects. A review of literature. Biotechnol Biotechnol Equip. 2017;31:215-20. https://doi.org/10.1080/13102818.2017.1281760 DOI: https://doi.org/10.1080/13102818.2017.1281760

Pezzatini S, Solito R, Morbidelli L, Lamponi S, Boanini E, Bigi A, Ziche M. The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. J Biomed Mater Res Part A 2005;76:656-63. https://doi.org/10.1002/jbm.a.30524 PMid:16294324 DOI: https://doi.org/10.1002/jbm.a.30524

Padmanabhan SK, Balakrishnan A, Chu MC, Lee YJ, Kim TN, Cho SJ. Sol-gel synthesis and characterization of hydroxyapatite nanorods. Particuology. 2009;7:466-70. https://doi.org/10.1016/j.partic.2009.06.008 DOI: https://doi.org/10.1016/j.partic.2009.06.008

Bogdanovičiene I, Beganskiene A, Kareiva A, Juškenas R, Selskis A, Ramanauskas R, et al. Infuence of heating conditions on the formation of solgel derived calcium hydroxyapatite. Chemija. 2010;21:98-105.

Lugo R, Karthik TV, Anaya M, Rosas R, Ceron V, Valderama R, et al. Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: Effect of pH and sintering temperature on structural and morphological properties. R Soc Open Sci. 2018;5(8):180962. https://doi.org/10.1098/rsos.180962 PMid:30225084 DOI: https://doi.org/10.1098/rsos.180962

Bastami F, Khojasteh A. Use of leukocyte-and platelet-rich fibrin for bone regeneration: A systematic review. J Regen Reconstr Restorate. 2016;1:47-68. https://doi.org/10.22037/rrr.v1i2.9841

Shrivastava A, Shenoi R, Garg A, Vats V, Gadve V, Siddiqui A. Role of platelet rich fibrin in healing of extraction socket. Int J Contemp Med Res. 2018;5:6-10. https://doi.org/10.21276/ijcmr.2018.5.5.29 DOI: https://doi.org/10.21276/ijcmr.2018.5.5.29

Saluja H, Dehane V, Mahindra U. Platelet-Rich fibrin: A second generation platelet concentrate and a new friend of oral and maxillofacial surgeons. Ann Maxillofac Surg. 2011;1:53. https://doi.org/10.4103/2231-0746.83158 PMid:23482459 DOI: https://doi.org/10.4103/2231-0746.83158

Grecu AF, Reclaru L, Ardelean LC, Nica O, Ciucă EM, Ciurea ME. Platelet-rich fibrin and its emerging therapeutic benefits for musculoskeletal injury treatment. Medicina (Kaunas). 2019;55(5):141. https://doi.org/10.3390/medicina55050141 PMid:31096718 DOI: https://doi.org/10.3390/medicina55050141

Chandran P, Sivadas A. Platelet-rich fibrin: Its role in periodontal regeneration. Saudi J Dent Res. 2013;5:1-6. https://doi.org/10.1016/j.ksujds.2013.09.001 DOI: https://doi.org/10.1016/j.ksujds.2013.09.001

Ezirganli S, Kazancioglu HO, Mihmanli A, Sharifov R, Aydin MS. Effects of different biomaterials on augmented bone volume resorptions. Clin Oral Implants Res. 2014;26(12):1482-8. https://doi.org/10.1111/clr.12495 PMid:25264123 DOI: https://doi.org/10.1111/clr.12495

Srinivas B, Das P, Rama MM, Qureshi AQ, Vaidya KC, Raziuddin SJ. Neurofibromatosis Type 1 in the Mandible. Ann Maxillofac Surg. 2018;8:28-34. https://doi.org/10.4103/ams.ams PMid:29963437 DOI: https://doi.org/10.4103/ams.ams_153_17

Fujioka-Kobayashi M, Miron RJ, Hernandez M, Kandalam U, Zhang Y, Choukroun J. Optimized platelet-rich fibrin with the low-speed concept: Growth factor release, biocompatibility, and cellular response. J Periodontol. 2016;88(1):112-21. https://doi.org/10.1902/jop.2016.160443 PMid:27587367 DOI: https://doi.org/10.1902/jop.2016.160443

Varshney S, Dwivedi A, Pandey V. Antimicrobial effects of various platelet rich concentrates-vibes from in-vitro studies-a systematic review. J Oral Biol Craniofac Res. 2019;9(4):299-305. https://doi.org/10.1016/j.jobcr.2019.06.013 PMid:31316893 DOI: https://doi.org/10.1016/j.jobcr.2019.06.013

Simon BI, Zatcoff AL, Kong JJ, Connell SM. Clinical and histological comparison of extraction socket healing following the use of autologous platelet-rich fibrin matrix (PRFM) to ridge preservation procedures employing demineralized freeze dried bone allograft material and membrane. Open Dent J. 2009;3:92-9. https://doi.org/10.2174/1874210600903010092 PMid:19543550 DOI: https://doi.org/10.2174/1874210600903010092

Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e45-50. https://doi.org/10.1016/j.tripleo.2005.07.009 PMid:16504850 DOI: https://doi.org/10.1016/j.tripleo.2005.07.009

Aydinyurt HS, Sancak T, Taskin C, Basbugan Y, Akinci L. Effects of ınjectable platelet-rich fibrin in experimental periodontitis in rats. Odontology. 2021;109(2):422-32. https://doi.org/10.1007/s10266-020-00557-1 PMid:33068206 DOI: https://doi.org/10.1007/s10266-020-00557-1

İzol BS, Üner DD. A new approach for root surface biomodification using injectable platelet-rich fibrin (I-PRF). Med Sci Monit. 2019;25:4744-50. https://doi.org/10.12659/MSM.915142 PMid:31241048 DOI: https://doi.org/10.12659/MSM.915142

Deenadayalan E, Kumar A, Tewari RK, Mishra SK, Iftekhar H. Management of large preiapical lesion with the combination of second generation platelet extract and hydroxyapatite bone graft: A report of three cases. J Clin Diagn Res. 2015;9(1):24-7. https://doi.org/10.7860/JCDR/2015/10885.5482 PMid:25738094 DOI: https://doi.org/10.7860/JCDR/2015/10885.5482

Karayürek F, Kadiroğlu ET, Nergiz Y, Akçay NC, Tunik S, Kanay BE, et al. Combining platelet rich fibrin with different bone graft materials: An experimental study on the histopathological and immunohistochemical aspects of bone healing. J Cranio Maxillofac Surg. 2019;47(5):815-25. https://doi.org/10.1016/j.jcms.2019.01.023 PMid:30765247 DOI: https://doi.org/10.1016/j.jcms.2019.01.023

Attia A. Treatment of periodontal class ii furcation defects: Clinical. Egypt Dent J. 2015;61:5049-63.

Panda S, Jayakumar ND, Sankari M, Varghese SS. Platelet rich fibrin and alloplast in treatment of intrabony defect. J Pharm Res. 2013;7:621-5. https://doi.org/10.1016/j.jopr.2013.07.023 DOI: https://doi.org/10.1016/j.jopr.2013.07.023

Anitha CM, Senthilkumar S, Rajasekar S, Arun RT. Platelet rich fibrin and nanocrystalline hydroxyapatite: Hope for regeneration in aggressive periodontitis: A novel clinical approach. Int J Appl Dent Sci. 2017;3(2):209-14.

Pradeep K, Kudva A, Narayanamoorthy V, Cariappa KM, Saraswathi MV. Platelet rich fibrin combined with synthetic nanocrystalline hydroxy apatite granules in the management of radicular cyst. Niger J Clin Pract. 2016;19(5):688-91. https://doi.org/10.4103/1119-3077.188711 PMid:27538563 DOI: https://doi.org/10.4103/1119-3077.188711

Lind M, Schumacker B, Sarballe K, Kellep J, Melsen F, Bungep C. Transforming growth factor-B enhances fracture healing in rabbit tibiae. Acta Ortop Scand. 1993;64(5):553-6. https://doi.org/10.3109/17453679308993691 PMid:8237323 DOI: https://doi.org/10.3109/17453679308993691

Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone. 1996;19:S1-12. https://doi.org/10.1016/S8756-3282(96)00138-X PMid:8830994 DOI: https://doi.org/10.1016/S8756-3282(96)00138-X

Chenchev IL, Ivanova VV, Neychev DZ, Cholakova RB. Application of platelet-rich fibrin and injectable platelet-rich fibrin in combination of bone substitute material for alveolar ridge augmentation a case report. Folia Med (Plovdiv). 2017;59:362-6. https://doi.org/10.1515/folmed-2017-0044 PMid:28976904 DOI: https://doi.org/10.1515/folmed-2017-0044

Larjava H. Oral Wound Healing Cell Biology and Clinical Management Edited by Professor and Chair. In: Larvaja H, editor. Division of Periodontics Faculty of Dentistry University of British Columbia Vancouver. Canada: Wiley-Blackwell; 2012.

de Gomes PS, Daugela P, Poskevicius L, Mariano L, Fernandes MH. Molecular and cellular aspects of socket healing in the absence and presence of graft materials and autologous platelet concentrates: A focused review. J Oral Maxillofac Res. 2019;10:1-18. https://doi.org/10.5037/jomr.2019.10302 DOI: https://doi.org/10.5037/jomr.2019.10302

Sculean A, Stavropoulos A, Bosshardt DD. Self-regenerative capacity of intra-oral bone defects. J Clin Periodontol. 2019;46(Suppl 21):70-81. https://doi.org/10.1111/jcpe.13075 PMid:30697789 DOI: https://doi.org/10.1111/jcpe.13075

Downloads

Published

2022-03-02

How to Cite

1.
Pascawinata A, Bakar A. Combination of Nanocrystalline Hydroxyapatite and Injectable Platelet-Rich Fibrin on Bone Graft Materials for Alveolar Bone Preservation. Open Access Maced J Med Sci [Internet]. 2022 Mar. 2 [cited 2024 Nov. 23];10(F):172-81. Available from: https://oamjms.eu/index.php/mjms/article/view/8762

Issue

Section

Narrative Review Article

Categories