Association between 1,5-anhydro-D-sorbitol, Insulin, and Incretins in Patients with Pre-diabetes and ST-elevation Myocardial Infarction

Authors

  • Dinara Sheryazdanova Department of Internal Medicine, Karaganda Medical University, Karaganda, Kazakhstan
  • Yelena Laryushina Department of Internal Medicine, Karaganda Medical University, Karaganda, Kazakhstan
  • Natalya Vassilyeva Department of Internal Medicine, Karaganda Medical University, Karaganda, Kazakhstan https://orcid.org/0000-0001-6802-6678
  • Aygul Serikbaeva Department of Internal Medicine, Karaganda Medical University, Karaganda, Kazakhstan https://orcid.org/0000-0002-8852-6597
  • Assel Alina Department of Internal Medicine, Karaganda Medical University, Karaganda, Kazakhstan
  • Maria Butyugina Department of Internal Medicine, Karaganda Medical University, Karaganda, Kazakhstan
  • Zauresh Tauesheva Department of Internal Medicine, Karaganda Medical University, Karaganda, Kazakhstan https://orcid.org/0000-0001-5492-0046

DOI:

https://doi.org/10.3889/oamjms.2022.8788

Keywords:

Insulin, Glucagon/GLP-1, Prediabetes, 1,5-AG, ST-elevation myocardial infarction

Abstract

BACKGROUND: Prediabetes itself could be an independent predictor of such adverse cardiovascular events as myocardial infarction and ischemic stroke. Since prediabetes is linked with hyperinsulinism it could also cause fluctuations of incretins concentration. Another significant fact related to prediabetes is glycemic variability. The impact of these factors on prediabetes and acute myocardial infarction is a promising phenomenon to study.

AIM: The study aims to estimate insulin, incretins, and glycemic variability in patients with impaired carbohydrate metabolism and acute myocardial infarction

METHODS: The 255 prediabetes patients participated in the observational case-control study. The first group included 85 patients hospitalized for STEMI. The second group included 170 patients without STEMI. Insulin and incretins were measured using a multiplex immunological assay with XMap technology on Bioplex 3D. The high-performance liquid chromatography with mass spectrometry was used to evaluate 1,5-AG concentration. The binary logistic regression was performed to evaluate the association between studying parameters and STEMI. 

RESULTS: The insulin secretion parameters showed higher insulin and C-peptide level in patients with STEMI. A similar trend was noted for the HOMA-IR index. Among incretin, we revealed a higher level of glucagon and reduced GLP-1 in patients with STEMI. The of 1,5-AG in STEMI patients was significantly lower than in non-STEMI patients. The logistic regression model shows that a lower plasma concentration of 1,5-AG increases the odds of STEMI in patients with prediabetes [OR 2.304 (95% CI 1.980–2.973), p = 0.018]. Reduced GLP-1 concentration also increased the odds of STEMI [OR 1.775 (95% CI 1.460-1.990), p = 0.001].

CONCLUSION: We discovered the association between 1,5-AG, GLP-1, and STEMI in patients with prediabetes. It is designating their potential role as cardiovascular risk markers in non-diabetic patients with impaired glucose metabolism. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. Global Status Report on Noncommunicable Diseases. Geneva, Switzerland: World Health Organization; 2016.

Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, et al. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(3):293-301. https://doi.org/10.1016/j.diabres.2010.01.026 PMid:20171754 DOI: https://doi.org/10.1016/j.diabres.2010.01.026

Cai X, Zhang Y, Li M, Wu JH, Mai L, Li J, et al. Association between prediabetes and risk of all-cause mortality and cardiovascular disease: Updated meta-analysis. BMJ. 2020;370:m2297. https://doi.org/10.1136/bmj.m2297 PMid:32669282 DOI: https://doi.org/10.1136/bmj.m2297

Khetan AK, Rajagopalan S. Prediabetes. Can J Cardiol. 2018;34(5):615-23. https://doi.org/10.1016/j.cjca.2017.12.030 PMid:29731022 DOI: https://doi.org/10.1016/j.cjca.2017.12.030

Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, et al. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2020;162:108072. https://doi.org/10.1016/j.diabres.2020.108072 PMid:32061820 DOI: https://doi.org/10.1016/j.diabres.2020.108072

Freckmann G, Hagenlocher S, Baumstark A, Jendrike N, Gillen RC, Rössner K, et al. Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals. J Diabetes Sci Technol. 2007;1(5):695-703. https://doi.org/10.1177/193229680700100513 PMid:19885137 DOI: https://doi.org/10.1177/193229680700100513

Selvin E, Warren B, He X, Sacks DB, Saenger AK. Establishment of community-based reference intervals for fructosamine, glycated albumin, and 1,5-anhydroglucitol. Clin Chem. 2018;64(5):843-50. https://doi.org/10.1373/clinchem.2017.285742 PMid:29436378 DOI: https://doi.org/10.1373/clinchem.2017.285742

Klimontov VV. Impact of glycemic variability on cardiovascular risk in diabetes. Kardiologiia. 2018;58(10):80-7. https://doi.org/10.18087/cardio.2018.10.10152 PMid:30359219 DOI: https://doi.org/10.18087/cardio.2018.10.10152

Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with Type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776-85. https://doi.org/10.1016/S2213-8587(19)30249-9 PMid:31422062 DOI: https://doi.org/10.1016/S2213-8587(19)30249-9

de Wit-Verheggen VHW, van de Weijer T. Changes in cardiac metabolism in prediabetes. Biomolecules. 2021;11(11):1680. https://doi.org/10.3390/biom11111680 PMid:34827678 DOI: https://doi.org/10.3390/biom11111680

Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Press. 2018;27(6):314-40. https://doi.org/10.1080/08037051.2018.1527177 PMid:30380928 DOI: https://doi.org/10.1080/08037051.2018.1527177

American Diabetes Association. Standards of medical care in diabetes-2018 abridged for primary care providers. Clin Diabetes. 2018;36(1):14-37. https://doi.org/10.2337/cd17-0119 PMid:29382975 DOI: https://doi.org/10.2337/cd17-0119

Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012;33(20):2551-67. https://doi.org/10.1161/CIR.0b013e31826e1058 PMid:22923432 DOI: https://doi.org/10.1161/CIR.0b013e31826e1058

Ikeda N, Hara H, Hiroi Y. 1,5-Anhydro-D-glucitol predicts coronary artery disease prevalence and complexity. J Cardiol. 2014;64(4):297-301. https://doi.org/10.1016/j.jjcc.2014.02.014 PMid:24679905 DOI: https://doi.org/10.1016/j.jjcc.2014.02.014

Kim WJ, Park CY. 1,5-Anhydroglucitol in diabetes mellitus. Endocrine. 2013;43(1):33-40. https://doi.org/10.1007/s12020-012-9760-6 PMid:22847316 DOI: https://doi.org/10.1007/s12020-012-9760-6

Standl E, Schnell O, Ceriello A. Postprandial hyperglycemia and glycemic variability: Should we care? Diabetes Care. 2011;34(Suppl 2):S120-7. https://doi.org/10.2337/dc11-s206 PMid:21525442 DOI: https://doi.org/10.2337/dc11-s206

Kuroda M, Shinke T, Sakaguchi K, Otake H, Takaya T, Hirota Y, et al. Effect of daily glucose fluctuation on coronary plaque vulnerability in patients pre-treated with lipid-lowering therapy: A prospective observational study. JACC Cardiovasc Interv. 2015;8(6):800-11. https://doi.org/10.1016/j.jcin.2014.11.025 PMid:25999102 DOI: https://doi.org/10.1016/j.jcin.2014.11.025

Kishimoto M, Yamasaki Y, Kubota M, Arai K, Morishima T, Kawamori R, et al. 1,5-anhydro-D-glucitol evaluates daily glycemic excursions in well-controlled NIDDM. Diabetes Care. 1995;18(8):1156-9. https://doi.org/10.2337/diacare.18.8.1156 PMid:7587851 DOI: https://doi.org/10.2337/diacare.18.8.1156

Kahles F, Rückbeil MV, Mertens RW, Foldenauer AC, Arrivas MC, Moellmann J, et al. Glucagon-like peptide 1 levels predict cardiovascular risk in patients with acute myocardial infarction. Eur Heart J. 2020;41(7):882-9. https://doi.org/10.1093/eurheartj/ehz728 PMid:31620788 DOI: https://doi.org/10.1093/eurheartj/ehz728

Del Olmo-Garcia MI, Merino-Torres JF. GLP-1 receptor agonists and cardiovascular disease in patients with Type 2 diabetes. J Diabetes Res. 2018;2018:4020492. https://doi.org/10.1155/2018/4020492 PMid:29805980 DOI: https://doi.org/10.1155/2018/4020492

Li Y, Rosenblit PD. Glucagon-Like peptide-1 receptor agonists and cardiovascular risk reduction in Type 2 diabetes mellitus: Is it a class effect? Curr Cardiol Rep. 2018;20(11):113. https://doi.org/10.1007/s11886-018-1051-2 PMid:30259238 DOI: https://doi.org/10.1007/s11886-018-1051-2

Neeland IJ, Marso SP, Ayers CR, Lewis B, Oslica R, Francis W, et al. Effects of liraglutide on visceral and ectopic fat in adults with overweight and obesity at high cardiovascular risk: A randomised, double-blind, placebo-controlled, clinical trial. Lancet Diabetes Endocrinol. 2021;9(9):595-605. https://doi.org/10.1016/S2213-8587(21)00179-0 PMid:34358471 DOI: https://doi.org/10.1016/S2213-8587(21)00179-0

Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev. 2022;102(1):155-208. https://doi.org/10.1152/physrev.00008.2021 PMid:34280055 DOI: https://doi.org/10.1152/physrev.00008.2021

Miao Z, Alvarez M, Ko A, Bhagat Y, Rahmani E, Jew B, et al. The causal effect of obesity on prediabetes and insulin resistance reveals the important role of adipose tissue in insulin resistance. PLoS Genet. 2020;16(9):e1009018. https://doi.org/10.1371/journal.pgen.1009018 PMid:32925908 DOI: https://doi.org/10.1371/journal.pgen.1009018

Petersen JL, McGuire DK. Impaired glucose tolerance and impaired fasting glucose--a review of diagnosis, clinical implications and management. Diab Vasc Dis Res. 2005;2(1):9-15. https://doi.org/10.3132/dvdr.2005.007 PMid:16305067 DOI: https://doi.org/10.3132/dvdr.2005.007

Brannick B, Dagogo-Jack S. Prediabetes and cardiovascular disease: Pathophysiology and interventions for prevention and risk reduction. Endocrinol Metab Clin North Am. 2018;47(1):33-50. https://doi.org/10.1016/j.ecl.2017.10.001 PMid:29407055 DOI: https://doi.org/10.1016/j.ecl.2017.10.001

Chen J, Zhang W, Wu YQ, Chen H, Zhao JF. Correlations of acute myocardial infarction complicated by cerebral infarction with insulin resistance, adiponectin and HMGB1. Eur Rev Med Pharmacol Sci. 2019;23(10):4425-4431. https://doi.org/10.26355/eurrev_201905_17951 PMid:31173318

Wiebe N, Stenvinkel P, Tonelli M. Associations of chronic inflammation, insulin resistance, and severe obesity with mortality, myocardial infarction, cancer, and chronic pulmonary disease. JAMA Netw Open. 2019;2(8):e1910456. https://doi.org/10.1001/jamanetworkopen.2019.10456 PMid:31469399 DOI: https://doi.org/10.1001/jamanetworkopen.2019.10456

Downloads

Published

2022-03-01

How to Cite

1.
Sheryazdanova D, Laryushina Y, Vassilyeva N, Serikbaeva A, Alina A, Butyugina M, Tauesheva Z. Association between 1,5-anhydro-D-sorbitol, Insulin, and Incretins in Patients with Pre-diabetes and ST-elevation Myocardial Infarction. Open Access Maced J Med Sci [Internet]. 2022 Mar. 1 [cited 2024 Nov. 24];10(B):464-9. Available from: https://oamjms.eu/index.php/mjms/article/view/8788