Impact of High Aspartame and High Fructose Diet on Vascular Reactivity, Glucose Metabolism and Liver Structure in Diabetic Rats

Authors

  • Adel Shalaby Department of Medical Physiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
  • Marwa Al-Gholam Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shibin Al Kawm, Egypt
  • Safa Elfiky Department of Pharmacology, Faculty of Medicine, Menoufia University, Shibin Al Kawm, Egypt
  • Ghada Elgarawany Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shibin Al Kawm, Egypt; Department of Biomedical Science, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates

DOI:

https://doi.org/10.3889/oamjms.2022.8810

Keywords:

Aspartame, Fructose, Diabetes, Vascular reactivity, HOMA-IR, Hepatic metabolism

Abstract

BACKGROUND: Diabetes mellitus is a chronic metabolic disorder, affected by fructose, and artificial sweeteners. Aspartame and fructose are popularly used, by diabetics, as substitutes to glucose.

AIM: This study evaluated the effect of high aspartame and fructose on vascular reactivity, glucose, and hepatic metabolism in diabetic rats.

MATERIALS AND METHODS: Forty-eight male rats were divided into six groups: Control, control-diabetic, aspartame, aspartame-diabetic, fructose, and fructose-diabetic. After 60 days, blood pressure, vascular reactivity to norepinephrine, Lipid profile, fasting glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), leptin, and Malondialdehyde (MDA) were measured.

RESULTS: High aspartame alone or with diabetes, decreased leptin, vascular reactivity, and increased triglyceride, cholesterol, MDA, and fasting blood glucose. Hepatic tissues showed dilated congested vessels, cellular infiltration, decreased Periodic Acid Schiff’s reaction, and increased collagenous fibers. High fructose decreased leptin, high-density lipoprotein, vascular reactivity, and increased cholesterol, Low-density lipoprotein, MDA, glucose, and HOMA-IR. Hepatic tissues showed more fatty infiltration, glycogen deposition, and increased collagenous-fibers. The condition became worse in diabetes-treated rats.

CONCLUSION: High aspartame and high fructose diet caused deleterious effects on diabetic rats by atherogenic, oxidative stress, vascular, glucose, and hepatic tissue metabolism impairment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81-90. https://doi.org/10.2337/dc14-S081 PMid:24357215 DOI: https://doi.org/10.2337/dc14-S081

Elgarawany GE, Badawy AD, Hazzaa SM. Co Q10 improves vascular reactivity in male diabetic rats by enhancing insulin sensitivity and antioxidant effect. Arch Physiol Biochem. 2020; 28:1-8. https://doi.org/10.1080/13813455.2020.1798465 PMid:32718232 DOI: https://doi.org/10.1080/13813455.2020.1798465

Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, et al. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term Type-2 diabetes complications. Sci Rep. 2018;8(1):424. https://doi.org/10.1038/s41598-017-18896-5 PMid:29323186 DOI: https://doi.org/10.1038/s41598-017-18896-5

Gardner C, Wylie-Rosett J, Gidding SS, Steffen LM, Johnson RK, Reader D, et al. Nonnutritive sweeteners: Current use and health perspectives: A scientific statement from the American heart association and the American diabetes association. Circulation. 2012;126(4):509-19. https://doi.org/10.1161/CIR.0b013e31825c42ee PMid:22777177 DOI: https://doi.org/10.1161/CIR.0b013e31825c42ee

Toews I, Lohner S, De Gaudry DK, Sommer H, Meerpohl JJ. Association between intake of non-sugar sweeteners and health outcomes: Systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ. 2019;364(11):4718. https://doi.org/10.1136/bmj.k4718 DOI: https://doi.org/10.1136/bmj.k4718

Havel PJ. Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev. 2005;63(5):133-57. https://doi.org/10.1301/nr.2005.may.133-157 PMid:15971409 DOI: https://doi.org/10.1111/j.1753-4887.2005.tb00132.x

Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010;299(5):E658-94. https://doi.org/10.1152/ajpendo.00283.2010 PMid:20823452 DOI: https://doi.org/10.1152/ajpendo.00283.2010

Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181-6. https://doi.org/10.1038/nature13793 PMid:25231862 DOI: https://doi.org/10.1038/nature13793

Howarth FC, Jacobson M, Shafiullah M, Adeghate E. Long‐term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Exp Physiol. 2005;90(6):827-35. https://doi.org/10.1113/expphysiol.2005.031252 PMid:16091403 DOI: https://doi.org/10.1113/expphysiol.2005.031252

Afifi-Yazar FU, Kasabri V, Abu-Dahab R. Medicinal plants from Jordan in the treatment of diabetes: Traditional uses vs. in vitro and in vivo evaluations--Part 2. Planta Med. 2011;77(11):1210-20. https://doi.org/10.1055/s-0031-1279983 PMid:21674438 DOI: https://doi.org/10.1055/s-0031-1279983

Brainard RE, Watson LJ, Demartino AM, Brittian KR, Readnower RD, Boakye AA, et al. High fat feeding in mice is insufficient to induce cardiac dysfunction and does not exacerbate heart failure. PLoS One. 2013;8(12):e83174. https://doi.org/10.1371/journal.pone.0083174 PMid:24367585 DOI: https://doi.org/10.1371/journal.pone.0083174

Choudhary AK, Sundareswaran L, Devi RS. Effects of aspartame on the evaluation of electrophysiological responses in Wistar albino rats. J Taibah Univ Sci. 2015;10(4):505-12. https://doi.org/10.1016/j.jtusci.2015.07.006 DOI: https://doi.org/10.1016/j.jtusci.2015.07.006

Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, et al. High-fructose and high-fat diet-induced disorders in rats: Impact on diabetes risk, hepatic and vascular complications. Nutr Metab (Lond). 2016;13:15. https://doi.org/10.1186/s12986-016-0074-1 PMid:26918024 DOI: https://doi.org/10.1186/s12986-016-0074-1

Caraway W, Watts N. Carbohydrates in Tietz NW. Fundamentals of Clinical Chemistry. United States: WB Saunder Company; 1970. p. 173-6.

Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med. 1993;15(4):353-63. https://doi.org/10.1016/0891-5849(93)90035-S PMid:8225017 DOI: https://doi.org/10.1016/0891-5849(93)90035-S

Giménez J, Garcia PM, Bonacasa B, Carbonell LF, Quesada T, Hernández I. Effects of oestrogen treatment and angiotensin‐converting enzyme inhibition on the microvasculature of ovariectomized spontaneously hypertensive rats. Exp Physiol. 2006;91(1):261-8. https://doi.org/10.1113/expphysiol.2005.032060 PMid:16282368 DOI: https://doi.org/10.1113/expphysiol.2005.032060

Parasuraman S, Raveendran R. Measurement of invasive blood pressure in rats. J Pharmacol Pharmacother. 2012;3(2):172-7. https://doi.org/10.4103/0976-500X.95521 PMid:22629093 DOI: https://doi.org/10.4103/0976-500X.103704

Carleton HM, Drury RA, Wallington EA. General Staining Procedures. Carleton’s Histological Technique. 5th ed. Oxford University Press: United Kingdom; 1980. p. 147-8.

Stacchiotti A, Favero G, Lavazza A, Golic I, Aleksic M, Korac A, et al. Hepatic macrosteatosis is partially converted to microsteatosis by melatonin supplementation in ob/ob mice non-alcoholic fatty liver disease. PLoS One. 2016;11(1):e0148115. https://doi.org/10.1371/journal.pone.0148115 PMid:26824477 DOI: https://doi.org/10.1371/journal.pone.0148115

Chen Y, Yu Q, Xu CB. A convenient method for quantifying collagen fibers in atherosclerotic lesions by image J software. Int J Clin Exp Med. 2017;10(10):14927-35.

AbdElwahab AH, Yousuf AF, Ramadan BK, Elimam H. Comparative Effects of Stevia rebaudiana and aspartame on hepato-renal function of diabetic rats: Biochemical and histological approaches. J Appl Pharma Sci. 2017;7(8):34-42. https://doi.org/10.7324/JAPS.2017.70806 DOI: https://doi.org/10.7324/JAPS.2017.70806

Gul SS, Hamilton AR, Munoz AR, Phupitakphol T, Liu W, Hyoju SK, et al. Inhibition of the gut enzyme intestinal alkaline phosphatase may explain how aspartame promotes glucose intolerance and obesity in mice. Appl Physiol Nutr Metab. 2017;42(1):77-83. https://doi.org/10.1139/apnm-2016-0346 PMid:27997218 DOI: https://doi.org/10.1139/apnm-2016-0346

Shapiro A, Mu W, Roncal C, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295(5):R1370-5. https://doi.org/10.1152/ajpregu.00195.2008 PMid:18703413 DOI: https://doi.org/10.1152/ajpregu.00195.2008

Jürgens H, Haass W, Castaneda TR, Schürmann A, Koebnick C, Dombrowski F, et al. Consuming fructose‐sweetened beverages increases body adiposity in mice. Obes Res. 2005;13(7):1146-56. https://doi.org/10.1038/oby.2005.136 PMid:16076983 DOI: https://doi.org/10.1038/oby.2005.136

Zafar M, Naqvi SM. Effects of STZ-Induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: A comparative study. Int J Morphol. 2010;28(1):135-42. DOI: https://doi.org/10.4067/S0717-95022010000100019

Adaramoye OA, Akanni OO. Effect of long-term administration of aspartame on biochemical indices, lipid profile and redox status of cellular system of male rats. J Basic Clin Physiol Pharmacol. 2016;27(1):29-37. https://doi.org/10.1515/jbcpp-2014-0130 PMid:26247507 DOI: https://doi.org/10.1515/jbcpp-2014-0130

Zaman MQ, Leray V, Le Bloc’h J, Thorin C, Ouguerram K, Nguyen P. Lipid profile and insulin sensitivity in rats fed with high-fat or high-fructose diets. Br J Nutr. 2011;106(Suppl 1):S206-10. https://doi.org/10.1017/S0007114511004454 PMid:22005430 DOI: https://doi.org/10.1017/S0007114511004454

Dai S, McNeill JH. Effects of fructose loading in streptozotocin-diabetic and nondiabetic rats. Can J Physiol Pharmacol. 1992;70(12):1583-9. https://doi.org/10.1139/y92-227 PMid:1301236 DOI: https://doi.org/10.1139/y92-227

Narayanaperumal J, Kumar RS, Manikandan S, Devi RS. Methanol-induced oxidative stress in rat lymphoid organs. J Occup Health. 2006;48(1):20-7. https://doi.org/10.1539/joh.48.20 PMid:16484759 DOI: https://doi.org/10.1539/joh.48.20

Madani Z, Malaisse WJ, Ait-Yahia D. A comparison between the impact of two types of dietary protein on brain glucose concentrations and oxidative stress in high fructose-induced metabolic syndrome rats. Biomed Rep. 2015;3(5):731-5. https://doi.org/10.3892/br.2015.498 PMid:26405554 DOI: https://doi.org/10.3892/br.2015.498

Apte MV, Pirola RC, Wilson JS. Mechanisms of alcoholic pancreatitis. J Gastroenterol Hepatol. 2010;25(12):1816-26. https://doi.org/10.1111/j.1440-1746.2010.06445.x PMid:21091991 DOI: https://doi.org/10.1111/j.1440-1746.2010.06445.x

Martinez-Morales F, Maldonado-Cervantes E, Isiordia- Espinoza MA, Aragon-Martinez OH. Nutritional and biochemical effects of aspartame intake in rats under an experimental diet. J Exp Biol Agric Sci. 2015;3(3):298-306. https://doi.org/10.18006/2015.3(3).298.306 DOI: https://doi.org/10.18006/2015.3(3).298.306

Veerapur VP, Prabhakar KR, Thippeswamy BS, Bansal P, Srinivasan KK, Unnikrishnan MK. Antidiabetic effect of Dodonaea viscosa (L). Lacq. aerial parts in high fructose-fed insulin resistant rats: A mechanism based study. Indian J Exp Biol. 2010;48(8):800-10. PMid:21341538

Rebollo A, Roglans N, Baena M, Padrosa A, Sánchez RM, Merlos M, et al. Liquid fructose down-regulates liver insulin receptor substrate 2 and gluconeogenic enzymes by modifying nutrient sensing factors in rats. J Nutr Biochem. 2014;25(2):250-8. https://doi.org/10.1016/j.jnutbio.2013.10.014 PMid:24445051 DOI: https://doi.org/10.1016/j.jnutbio.2013.10.014

Beck B, Burlet A, Max JP, Stricker-Krongrad A. Effects of long-term ingestion of aspartame on hypothalamic neuropeptide Y, plasma leptin and body weight gain and composition. Physiol Behav. 2002;75(1-2):41-7. https://doi.org/10.1016/s0031-9384(01)00654-0 PMid:11890951 DOI: https://doi.org/10.1016/S0031-9384(01)00654-0

Schéle E, Grahnemo L, Anesten F, Hallén A, Bäckhed F, Jansson JO. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology. 2013;154(10):3643-51. https://doi.org/10.1210/en.2012-2151 PMid:23892476 DOI: https://doi.org/10.1210/en.2012-2151

Teff KL, Elliott SS, Tschöp M, Kieffer TJ, Rader D, Heiman M, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab. 2004;89(6):2963-72. https://doi.org/10.1210/jc.2003-031855 PMid:15181085 DOI: https://doi.org/10.1210/jc.2003-031855

Soliman NA. Effect of experimentally induced diabetes mellitus on serum leptin level and the role of insulin replacement therapy. Egypt J Hosp Med. 2001;3(1):190-208. https://doi.org/10.21608/EJHM.2001.18912 DOI: https://doi.org/10.21608/ejhm.2001.18912

Paz-Filho G, Mastronardi C, Wong ML, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab. 2012;16(Suppl 3):S549-55. https://doi.org/10.4103/2230-8210.105571 PMid:23565489 DOI: https://doi.org/10.4103/2230-8210.105571

Mossavar-Rahmani Y, Kamensky V, Manson JE, Silver B, Rapp SR, Haring B, et al. Artificially sweetened beverages and stroke, coronary heart disease, and all-cause mortality in the women’s health initiative. Stroke. 2019;50(3):555-62. https://doi.org/10.1161/STROKEAHA.118.023100 PMid:30802187 DOI: https://doi.org/10.1161/STROKEAHA.118.023100

Kolderup A, Svihus B. Fructose metabolism and relation to atherosclerosis, Type 2 diabetes, and obesity. J Nutr Metab. 2015;2015:823081. https://doi.org/10.1155/2015/823081 PMid:26199742 DOI: https://doi.org/10.1155/2015/823081

Rhee SY, Kim YS. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab J. 2018;42(3):188-95. https://doi.org/10.4093/dmj.2017.0105 PMid:29885110 DOI: https://doi.org/10.4093/dmj.2017.0105

Khidr BM, El-Sokkary GH, Saleh SM. Study on morphological changes induced by aspartame on liver of normal and diabetic male albino rats. J Histol Histopathol. 2017;4(1):1. https://doi.org/10.7243/2055-091X-4-1 DOI: https://doi.org/10.7243/2055-091X-4-1

Zhong L, Wang X, Wang S, Yang L, Gao H, Yang C. The anti-fibrotic effect of bone morphogenic protein-7 (BMP-7) on liver fibrosis. Int J Med Sci. 2013;10(4):441-50. https://doi.org/10.7150/ijms.5765 PMid:23471555 DOI: https://doi.org/10.7150/ijms.5765

Bai T, Lian LH, Wu YL, Wan Y, Nan JX. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells. Int Immunopharmacol. 2013;15(2):275-81. https://doi.org/10.1016/j.intimp.2012.12.020 PMid:23318601 DOI: https://doi.org/10.1016/j.intimp.2012.12.020

El-Sokkary GH, Khidr BM, Saleh SM. Aspartame-induced oxidative stress on liver and kidney in normal and diabetic adult male rats. Indian J Appl Res. 2016;6(8):511.

Lin R, Jia Y, Wu F, Meng Y, Sun Q, Jia L. Combined exposure to fructose and bisphenol a exacerbates abnormal lipid metabolism in liver of developmental male rats. Int J Environ Res Public Health. 2019;16(21):4152. https://doi.org/10.3390/ijerph16214152 PMid:31661889 DOI: https://doi.org/10.3390/ijerph16214152

David A, Robin R, Alasttair D, David H, Fleming S. Muir’s Textbook of Pathology. London: Edward Arnold Pub Ltd; 2008. p. 77-100.

Nieto N, Greenwel P, Friedman SL, Zhang F, Dannenberg AJ, Cederbaum AI. Ethanol and arachidonic acid increase alpha 2 (I) collagen expression in rat hepatic stellate cells overexpressing cytochrome P450 2E1: Role of H2O2 and cyclooxygenase-2. J Biol Chem. 2000;275(26):20136-45. https://doi.org/10.1074/jbc.M001422200 PMid:10770928 DOI: https://doi.org/10.1074/jbc.M001422200

Castro MC, Francini F, Schinella G, Caldiz CI, Zubiría MG, Gagliardino JJ, et al. Apocynin administration prevents the changes induced by a fructose-rich diet on rat liver metabolism and the antioxidant system. Clin Sci (Lond). 2012;123(12):681-92. https://doi.org/10.1042/CS20110665 PMid:22738259 DOI: https://doi.org/10.1042/CS20110665

Downloads

Published

2022-05-23

How to Cite

1.
Shalaby A, Al-Gholam M, Elfiky S, Elgarawany G. Impact of High Aspartame and High Fructose Diet on Vascular Reactivity, Glucose Metabolism and Liver Structure in Diabetic Rats. Open Access Maced J Med Sci [Internet]. 2022 May 23 [cited 2024 Apr. 25];10(A):1433-4. Available from: https://oamjms.eu/index.php/mjms/article/view/8810

Issue

Section

Pathophysiology

Categories