Serum Level of High-Mobility Group Box Protein 1 as a Potential Treatment Target in Egyptian Sickle Cell Disease Patients

Authors

  • Aya Mohamed Adel Arafat Department of Clinical and Chemical Pathology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt https://orcid.org/0000-0001-8239-0433
  • Shahira K. A. Botros Department of Clinical and Chemical Pathology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt image/svg+xml
  • Rasha Afifi Department of Pediatrics, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt image/svg+xml
  • Shahira Amin Zayed Department of Clinical and Chemical Pathology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt image/svg+xml
  • Mohamed Fateen Department of Clinical and Chemical Pathology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt image/svg+xml https://orcid.org/0000-0002-1533-4092

DOI:

https://doi.org/10.3889/oamjms.2022.8868

Keywords:

Sickle cell disease, High mobility group box 1, rs2249825, Egyptian

Abstract

Background:

During tissue injury, high mobility group box 1 (HMGB1) is passively released from necrotic cells and actively secreted by inflammatory cells. Extracellular HMGB1 acts as an amplifier of Toll-Like Receptor (TLR)-dependent inflammation rather than a primary trigger of inflammation. We studied HMGB1 quantitative trait locus reference sequence 2249825 (rs2249825) and its serum level in both sickle cell disease (SCD) patients and healthy subjects to explore its possible role in the pathogenesis of vaso-occlusive crises (VOCs).

Methods:

HMGB1 rs2249825 was assayed in peripheral blood samples using real-time polymerase chain reaction (RT-PCR). While the serum level was assayed using a two-site enzyme-linked immunosorbent technique (ELISA).

Results:

Both the SCD patients and the control group had comparable HMGB1 rs2249825 genotype frequencies (P-value >0.05). SCD patients at their steady-state showed statistically significantly higher serum HMGB1 levels than the healthy controls, a median of 0.6 ng/ml with a range of 0.1- 85 ng/ml versus a median of 0.3 ng/ml and a range of 0.1-3 ng/ml (P-value <0.001), respectively. Statistically significant skewed high serum HMGB1 in the VOC samples in contrast to the steady-state samples was observed in the SCD patients with a median of 3.2 ng/ml and a range of 0.3-76.4 ng/ml versus a median of 0.2 ng/ml and a range 0.2-7.4 ng/ml (P-value <0.0001), respectively.

 

 

Conclusion:

HMGB1 could have a role in the VOC pathogenesis, hence it is suggested as a potential additive therapeutic target in SCD in general and in vaso-occlusions in specific.

Keywords:

Sickle cell disease, HMGB1, Hemoglobin S

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Williams TN, Thein SL. Sickle cell anemia and its phenotypes. Annu Rev Genomics Hum Genet. 2018;19:113-47. https://doi.org/10.1146/annurev-genom-083117-021320 PMid:29641911 DOI: https://doi.org/10.1146/annurev-genom-083117-021320

Bakr S, Khorshied M, Talha N, Jaffer KY, Soliman N, Eid K, et al. Implication of HMOX1 and CCR5 genotypes on clinical phenotype of Egyptian patients with sickle cell anemia. Ann Hematol. 2019;98(8):1805-12. https://doi.org/10.1007/s00277-019-03697-9 PMid:31030250 DOI: https://doi.org/10.1007/s00277-019-03697-9

Matte A, Zorzi F, Mazzi F, Federti E, Olivieri O, De Franceschi L. New therapeutic options for the treatment of sickle cell disease. Mediterr J Hematol Infect Dis. 2019;11(1):e2019002. DOI: https://doi.org/10.4084/mjhid.2019.002

Steinberg MH. Genetic etiologies for phenotypic diversity in sickle cell anemia. ScientificWorldJournal. 2009;9:46-67. https://doi.org/10.1100/tsw.2009.10 PMid:19151898 DOI: https://doi.org/10.1100/tsw.2009.10

Sundd P, Gladwin MT, Novelli EM. Pathophysiology of sickle cell disease. Annu Rev Pathol. 2019;14:263-92. https://doi.org/10.1146/annurev-pathmechdis-012418-012838 PMid:30332562 DOI: https://doi.org/10.1146/annurev-pathmechdis-012418-012838

Keikhaei B, Mohseni AR, Norouzirad R, Alinejadi M, Ghanbari S, Shiravi F, et al. Altered levels of pro-inflammatory cytokines in sickle cell disease patients during vaso-occlusive crises and the steady-state condition. Eur Cytokine Netw. 2013;24(1):45-52. https://doi.org/10.1684/ecn.2013.0328 PMid:23608554 DOI: https://doi.org/10.1684/ecn.2013.0328

Pitanga TN, Vilas-Boas W, Cerqueira BA, Seixas MO, Barbosa CG, Adorno EV, et al. Cytokine profiles in sickle cell anemia: Pathways to be unraveled. Adv Biosci Biotechnol. 2013;4(7A1):34625. https://doi.org/10.4236/abb.2013.47A1002 DOI: https://doi.org/10.4236/abb.2013.47A1002

Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017;390(10091):311-23. https://doi.org/10.1016/S0140-6736(17)30193-9 PMid:28159390 DOI: https://doi.org/10.1016/S0140-6736(17)30193-9

Carpenter JL, Hulbert ML. Neurological manifestations of sickle cell disease and their impact on allogeneic hematopoietic stem cell transplantation. In: Sickle Cell Disease and Hematopoietic Stem Cell Transplantation. Cham: Springer; 2018. p. 137-59. DOI: https://doi.org/10.1007/978-3-319-62328-3_6

Carstens GR, Paulino BB, Katayama EH, Amato‐Lourenço LF, Fonseca GH, Souza R, et al. Clinical relevance of pulmonary vasculature involvement in sickle cell disease. Br J Haematol. 2019;185(2):317-26. https://doi.org/10.1111/bjh.15795 PMid:30739309 DOI: https://doi.org/10.1111/bjh.15795

Baptista RB, Almeida E. The emerging challenge of sickle cell nephropathy. Nephrol Dial Transplant. 2021;36(5):779-81. https://doi.org/10.1093/ndt/gfz197 PMid:31580444 DOI: https://doi.org/10.1093/ndt/gfz197

Martí Carvajal AJ, Solà I, Agreda‐Pérez LH. Treatment for avascular necrosis of bone in people with sickle cell disease. Cochrane Database Syst Rev. 2016;(8):CD004344. https://doi.org/10.1002/14651858.CD004344.pub6 PMid:27502327 DOI: https://doi.org/10.1002/14651858.CD004344.pub6

Ballas SK. Sickle cell disease: Classification of clinical complications and approaches to preventive and therapeutic management. Clin Hemorheol Microcirc. 2018;68(2-3):105-28. https://doi.org/10.3233/CH-189002 PMid:29614627 DOI: https://doi.org/10.3233/CH-189002

El Hoss S, Brousse V. Considering the spleen in sickle cell disease. Expert Rev Hematol. 2019;12(7):563-73. https://doi.org/10.1080/17474086.2019.1627192 PMid:31195851 DOI: https://doi.org/10.1080/17474086.2019.1627192

Vanderhave KL, Perkins CA, Scannell B, Brighton BK. Orthopaedic manifestations of sickle cell disease. J Am Acad Orthop Surg. 2018;26(3):94-101. https://doi.org/10.5435/JAAOS-D-16-00255 PMid:29309293 DOI: https://doi.org/10.5435/JAAOS-D-16-00255

Savage WJ, Buchanan GR, Yawn BP, Afenyi‐Annan AN, Ballas SK, Goldsmith JC, et al. Evidence gaps in the management of sickle cell disease: A summary of needed research. Am J Hematol. 2015;90(4):273-5. https://doi.org/10.1002/ajh.23945 PMid:25639238 DOI: https://doi.org/10.1002/ajh.23945

Shah N, Beenhouwer D, Broder MS, Bronte-Hall L, De Castro L, Gibbs SN, et al. Severity classification for sickle cell disease: A RAND/UCLA modified Delphi panel. Blood. 2019;134 Suppl 1:415. DOI: https://doi.org/10.1182/blood-2019-121556

Guo ZS, Liu Z, Bartlett DL, Tang D, Lotze MT. Life after death: targeting high mobility group box 1 in emergent cancer therapies. Am J Cancer Res. 2013;3(1):1-20. PMid:23359863

Goodwin GH, Sanders C, Johns EW. A new group of chromatin‐associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973;38(1):14-9. https://doi.org/10.1111/j.1432-1033.1973.tb03026.x PMid:4774120 DOI: https://doi.org/10.1111/j.1432-1033.1973.tb03026.x

Kornblit B, Munthe‐Fog L, Petersen SL, Madsen HO, Vindeløv L, Garred P. The genetic variation of the human HMGB1 gene. Tissue Antigens. 2007;70(2):151-6. https://doi.org/10.1111/j.1399-0039.2007.00854.x PMid:17610420 DOI: https://doi.org/10.1111/j.1399-0039.2007.00854.x

Jin H, Wu J, Yang Q, Cai Y, He W, Liu C. High mobility group box 1 protein polymorphism affects susceptibility to recurrent pregnancy loss by up-regulating gene expression in chorionic villi. J Assist Reprod Genet. 2015;32(7):1123-8. DOI: https://doi.org/10.1007/s10815-015-0493-3

Wang LH, Wu MH, Chen PC, Su CM, Xu G, Huang CC, et al. Prognostic significance of high-mobility group box protein 1 genetic polymorphisms in rheumatoid arthritis disease outcome. Int J Med Sci. 2017;14(13):1382-8. https://doi.org/10.7150/ijms.21773 PMid:29200952 DOI: https://doi.org/10.7150/ijms.21773

Xu H, Wandersee NJ, Guo Y, Jones DW, Holzhauer SL, Hanson MS, et al. Sickle cell disease increases high mobility group box 1: A novel mechanism of inflammation. Blood. 2014;124(26):3978-81. https://doi.org/10.1182/blood-2014-04-560813 PMid:25339362 DOI: https://doi.org/10.1182/blood-2014-04-560813

Galarneau G, Coady S, Garrett ME, Jeffries N, Puggal M, Paltoo D, et al. Gene-centric association study of acute chest syndrome and painful crisis in sickle cell disease patients. Blood. 2013;122(3):434-42. https://doi.org/10.1182/blood-2013-01-478776 PMid:23719301 DOI: https://doi.org/10.1182/blood-2013-01-478776

Ensembl; 2020. rs2249825. Available from: http://www.ensembl.org/Homo_sapiens/Variation/Population?r=13:30463266-30464266;v=rs2249825;vdb=variatio n;vf=35673113.

Qiu P, Wang L, Ni J, Zhang Y. Associations between HMGB1 gene polymorphisms and susceptibility and clinical outcomes in Chinese Han sepsis patients. Gene. 2019;687:23-9. https://doi.org/10.1016/j.gene.2018.11.027 PMid:30423384 DOI: https://doi.org/10.1016/j.gene.2018.11.027

Wang JX, Yu HL, Bei SS, Cui ZH, Li ZW, Liu ZJ, et al. Association of HMGB1 gene polymorphisms with risk of colorectal cancer in a Chinese population. Med Sci Monit. 2016;22:3419-25. https://doi.org/10.12659/msm.896693 PMid:27665685 DOI: https://doi.org/10.12659/MSM.896693

Kalinina N, Agrotis A, Antropova Y, DiVitto G, Kanellakis P, Kostolias G, et al. Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: Role of activated macrophages and cytokines. Arterioscler Thromb Vasc Biol. 2004;24(12):2320-5. https://doi.org/10.1161/01.ATV.0000145573.36113.8a PMid:15374849 DOI: https://doi.org/10.1161/01.ATV.0000145573.36113.8a

Downloads

Published

2022-04-23

How to Cite

1.
Arafat AMA, Botros SKA, Afifi R, Zayed SA, Fateen M. Serum Level of High-Mobility Group Box Protein 1 as a Potential Treatment Target in Egyptian Sickle Cell Disease Patients. Open Access Maced J Med Sci [Internet]. 2022 Apr. 23 [cited 2024 Apr. 26];10(B):1072-8. Available from: https://oamjms.eu/index.php/mjms/article/view/8868

Funding data

Most read articles by the same author(s)