Assessment of Sustained Systemic Inflammatory Response Syndrome and CSF Markers as Predictive Values Associated with Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage
DOI:
https://doi.org/10.3889/oamjms.2022.8925Keywords:
Hydrocephalus, Shunt dependent, Subarachnoid hemorrhage, Systemic inflammatory response syndromeAbstract
Aim of the study: This study was conducted to detect incidence and risk factors of shunt-dependent hydrocephalus, including Systemic Inflammatory Response Syndrome.
Patients and methods: After obtaining ethical approval from the research ethics committee of Cairo University, this study was conducted in two phases, phase I in the form of follow up study to detect the incidence of shunt dependent hydrocephalus in patients with ruptured subarachnoid aneurysm then phase II in the form of comparative one to detect the risk factors of acquisition of shunt dependent hydrocephalus and detect the predictive role of SIRS in SDH. The study included 90 patients with ruptured subarachnoid aneurysms followed up in the department of neurosurgery of Cairo university hospital from April 2018 to April 2020.
Results: The incidence of shunt-dependent hydrocephalus was 28% among the studied patients with significant association with high-grade SIRS, Fisher score, Hunt and Hess score, and leukocytosis. The CSF white blood cells and protein were significantly higher in the hydrocephalus group. Also, there was significant hypernatremia among the hydrocephalic group.
Conclusion: Despite the study's analytical design, we observed a link between high fisher, SIRS, hypernatremia, and shunt-dependent hydrocephalus in aneurysmal SAH patients. Serum sodium, CSF WBCs, and protein may all be used to predict HC.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Erixon HO, Sorteberg A, Sorteberg W, Eide PK. Predictors of shunt dependency after aneurysmal subarachnoid hemorrhage: Results of a single-center clinical trial. Acta Neurochir (Wien). 2014;156(11):2059-69. https://doi.org/10.1007/s00701-014-2200-z PMid:25143185 DOI: https://doi.org/10.1007/s00701-014-2200-z
Karimy JK, Duran D, Hu JK, Gavankar C, Gaillard JR, Bayri Y, et al. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus. 2016;41(5):E10. https://doi.org/10.3171/2016.8.FOCUS16278 PMid:27798982 DOI: https://doi.org/10.3171/2016.8.FOCUS16278
Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med. 2017;23(8):997-1003. https://doi.org/10.1038/nm.4361 PMid:28692063 DOI: https://doi.org/10.1038/nm.4361
Dhar R, Diringer MN. The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care. 2008;8(3):404-12. https://doi.org/10.1007/s12028-008-9054-2 PMid:18196475 DOI: https://doi.org/10.1007/s12028-008-9054-2
Faul F, Erdfelder E, Lang A, Buchner A. G* Power 3.1. Institute for Experimental Psychology: Dusseldorf: Herinrich Heine University of Dusseldorf; 2009.
Eagles ME, Jaja BN, Macdonald RL. Incorporating a modified graeb score to the modified fisher scale for improved risk prediction of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. Neurosurgery. 2018;82(3):299-305. https://doi.org/10.1093/neuros/nyx165 PMid:28419304 DOI: https://doi.org/10.1093/neuros/nyx165
Chen S, Luo J, Reis C, Manaenko A, Zhang J. Hydrocephalus after subarachnoid hemorrhage: Pathophysiology, diagnosis, and treatment. Biomed Res Int. 2017;2017:8584753. https://doi.org/10.1155/2017/8584753 PMid:28373987 DOI: https://doi.org/10.1155/2017/8584753
Rosen DS, Macdonald RL. Subarachnoid hemorrhage grading scales: A systematic review. Neurocrit Care. 2005;2(2):110-8. https://doi.org/10.1385/ncc:2:2:110 PMid:16159052 DOI: https://doi.org/10.1385/NCC:2:2:110
Dorai Z, Hynan LS, Kopitnik TA, Samson D. Factors related to hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52(4):763-9. https://doi.org/10.1227/01.neu.0000053222.74852.2d PMid:12657171 DOI: https://doi.org/10.1227/01.NEU.0000053222.74852.2D
Scott HF, Deakyne SJ, Woods JM, Bajaj L. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department. Acad Emerg Med. 2015;22(4):381-9. https://doi.org/10.1111/acem.12610 PMid:25778743 DOI: https://doi.org/10.1111/acem.12610
O’Kelly CJ, Kulkarni AV, Austin PC, Urbach D, Wallace MC. Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: Incidence, predictors, and revision rates. J Neurosurg. 2009;111(5):1029-35. https://doi.org/10.3171/2008.9.JNS08881 PMid:19361256 DOI: https://doi.org/10.3171/2008.9.JNS08881
Aboul-Ela HM, Salah El-Din AM, Zaater AA, Shehab M, El Shahawy OA. Predictors of shunt-dependent hydrocephalus following aneurysmal subarachnoid hemorrhage: A pilot study in a single Egyptian institute. Egypt J Neurol Psychiatr Neurosurg. 2018;54(1):11. https://doi.org/10.1186/s41983-018-0015-1 PMid:29780231 DOI: https://doi.org/10.1186/s41983-018-0015-1
Wang YM, Lin YJ, Chuang MJ, Lee TH, Tsai NW, Cheng BC, et al. Predictors and outcomes of shunt-dependent hydrocephalus in patients with aneurysmal sub-arachnoid hemorrhage. BMC Surg. 2012;12:12. https://doi.org/10.1186/1471-2482-12-12 PMid:22765765 DOI: https://doi.org/10.1186/1471-2482-12-12
Chang SI, Tsai MD, Yen DH, Hsieh CT. The clinical predictors of shunt-dependent hydrocephalus following aneurysmal subarachnoid hemorrhage. Turk Neurosurg. 2018;28(1):36-42. https://doi.org/10.5137/1019-5149.JTN.18752-16.1 PMid:27858393 DOI: https://doi.org/10.5137/1019-5149.JTN.18752-16.1
Chan M, Alaraj A, Calderon M, Herrera SR, Gao W, Ruland S, et al. Prediction of ventriculoperitoneal shunt dependency in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2009;110(1):44-9. https://doi.org/10.3171/2008.5.17560 PMid:18950263 DOI: https://doi.org/10.3171/2008.5.17560
McMahon CJ, Hopkins S, Vail A, King AT, Smith D, Illingworth KJ, et al. Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage. J Neurointerv Surg. 2013;5(6):512-7. https://doi.org/10.1136/neurintsurg-2012-010386 PMid:22952245 DOI: https://doi.org/10.1136/neurintsurg-2012-010386
Miller BA, Turan N, Chau M, Pradilla G. Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. Biomed Res Int. 2014;2014:384342. https://doi.org/10.1155/2014/384342 PMid:25105123 DOI: https://doi.org/10.1155/2014/384342
Spallone A, Acqui M, Pastore FS, Guidetti B. Relationship between leukocytosis and ischemic complications following aneurysmal subarachnoid hemorrhage. Surg Neurol. 1987;27(3):253-8. https://doi.org/10.1016/0090-3019(87)90038-3 PMid:3810457 DOI: https://doi.org/10.1016/0090-3019(87)90038-3
Wessell AP, Kole MJ, Cannarsa G, Oliver J, Jindal G, Miller T, et al. A sustained systemic inflammatory response syndrome is associated with shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2018;130(6):1984-91. https://doi.org/10.3171/2018.1.JNS172925 PMid:29957109 DOI: https://doi.org/10.3171/2018.1.JNS172925
Tan Q, Chen Q, Feng Z, Shi X, Tang J, Tao Y, et al. Cannabinoid receptor 2 activation restricts fibrosis and alleviates hydrocephalus after intraventricular hemorrhage. Brain Res. 2017;1654(Pt A):24-33. https://doi.org/10.1016/j.brainres.2016.10.016 PMid:27769788 DOI: https://doi.org/10.1016/j.brainres.2016.10.016
Yan H, Chen Y, Li L, Jiang J, Wu G, Zuo Y, et al. Decorin alleviated chronic hydrocephalus via inhibiting TGF-β1/Smad/CTGF pathway after subarachnoid hemorrhage in rats. Brain Res. 2016;1630:241-53. https://doi.org/10.1016/j.brainres.2015.11.004 PMid:26556770 DOI: https://doi.org/10.1016/j.brainres.2015.11.004
Wostrack M, Reeb T, Martin J, Kehl V, Shiban E, Preuss A, et al. Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: the role of intrathecal interleukin-6. Neurocrit Care. 2014;21(1):78-84. https://doi.org/10.1007/s12028-014-9991-x PMid:24840896 DOI: https://doi.org/10.1007/s12028-014-9991-x
Jabbarli R, Bohrer AM, Pierscianek D, Müller D, Wrede KH, Dammann P, et al. The CHESS score: A simple tool for early prediction of shunt dependency after aneurysmal subarachnoid hemorrhage. Eur J Neurol. 2016;23(5):912-8. https://doi.org/10.1111/ene.12962 PMid:26918845 DOI: https://doi.org/10.1111/ene.12962
Johnston MG, Boulton M, Flessner M. Cerebrospinal fluid absorption revisited: Do extracranial lymphatics play a role? Neuroscientist. 2000;6(2):77-87. DOI: https://doi.org/10.1177/107385840000600206
Wright BL, Lai JT, Sinclair AJ. Cerebrospinal fluid and lumbar puncture: A practical review. J Neurol 2012;259(8):1530-45. https://doi.org/10.1007/s00415-012-6413-x PMid:22278331 DOI: https://doi.org/10.1007/s00415-012-6413-x
Schaller B. Physiology of cerebral venous blood flow: From experimental data in animals to normal function in humans. Brain Res Rev. 2004;46(3):243-60. https://doi.org/10.1016/j.brainresrev.2004.04.005 PMid:15571768 DOI: https://doi.org/10.1016/j.brainresrev.2004.04.005
Shrestha S, Bishokarma S, Lohani S, Sapkota S, Thapa S, Gongal DN. Prediction of shunt dependent hydrocephalus following aneurysmal subarachnoid hemorrhage “algorithm based management”. Nepal J Neurosci. 2018;15(3):21-6. DOI: https://doi.org/10.3126/njn.v15i3.23272
Yamada S, Ishikawa M, Yamamoto K, Ino T, Kimura T, Kobayashi S. Aneurysm location and clipping versus coiling for development of secondary normal-pressure hydrocephalus after aneurysmal subarachnoid hemorrhage: Japanese Stroke DataBank. J Neurosurg. 2015;123(6):1555-61. https://doi.org/10.3171/2015.1.JNS142761 PMid:26230474 DOI: https://doi.org/10.3171/2015.1.JNS142761
Paisan GM, Ding D, Starke RM, Crowley RW, Liu KC. Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: predictors and long-term functional outcomes. Neurosurgery 2018;83(3):393-402. https://doi.org/10.1093/neuros/nyx393 PMid:28973194 DOI: https://doi.org/10.1093/neuros/nyx393
Faried A, Arief G, Arifin MZ, Nataprawira HM. Correlation of lactate concentration in peripheral plasma and cerebrospinal fluid with Glasgow outcome scale for patients with tuberculous meningitis complicated by acute hydrocephalus treated with fluid diversions. World Neurosurg. 2018;111:e178-82. https://doi.org/10.1016/j.wneu.2017.12.007 PMid:29248780 DOI: https://doi.org/10.1016/j.wneu.2017.12.007
Wang Y, Xie Y, Wang H, Zhang J, Li C, Chen F, et al. Development and clinical translation of a perioperative nomogram incorporating free fatty acids to predict poor outcome of aneurysmal subarachnoid hemorrhage following endovascular treatment. Front Neurol. 2021;12:629997. https://doi.org/10.3389/fneur.2021.629997 PMid:34385967 DOI: https://doi.org/10.3389/fneur.2021.629997
Connolly ES Jr., Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711-37. https://doi.org/10.1161/STR.0b013e3182587839 PMid:22556195 DOI: https://doi.org/10.1161/STR.0b013e3182587839
Lai L, Morgan MK. Predictors of in-hospital shunt-dependent hydrocephalus following rupture of cerebral aneurysms. J Clin Neurosci. 2013;20(8):1134-8. https://doi.org/10.1016/j.jocn.2012.09.033 PMid:23517672 DOI: https://doi.org/10.1016/j.jocn.2012.09.033
Mijderwijk HJ, Fischer I, Zhivotovskaya A, Bostelmann R, Steiger HJ, Cornelius JF, et al. Prognostic model for chronic shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2019;124:e572-9. https://doi.org/10.1016/j.wneu.2018.12.156 PMid:30639492 DOI: https://doi.org/10.1016/j.wneu.2018.12.156
Qureshi AI, Suri MF, Sung GY, Straw RN, Yahia AM, Saad M, et al. Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;50(4):749-55; discussion 755-6. https://doi.org/10.1097/00006123-200204000-00012 PMid:11904025 DOI: https://doi.org/10.1097/00006123-200204000-00012
Fisher LA, Ko N, Miss J, Tung PP, Kopelnik A, Banki NM, et al. Hypernatremia predicts adverse cardiovascular and neurological outcomes after SAH. Neurocrit Care. 2006;5(3):180-5. https://doi.org/10.1385/NCC:5:3:180 PMid:17290085 DOI: https://doi.org/10.1385/NCC:5:3:180
Alimohamadi M, Saghafinia M, Alikhani F, Danial Z, Shirani M, Amirjamshidi A. Impact of electrolyte imbalances on the outcome of aneurysmal subarachnoid hemorrhage: A prospective study. Asian J Neurosurg. 2016;11(1):29-33. https://doi.org/10.4103/1793-5482.154978 PMid:26889275 DOI: https://doi.org/10.4103/1793-5482.154978
Chen I, Mitchell P. Serum potassium and sodium levels after subarachnoid haemorrhage. Br J Neurosurg. 2016;30(5):554-9. https://doi.org/10.1080/02688697.2016.1181151 PMid:27248003 DOI: https://doi.org/10.1080/02688697.2016.1181151
Sherlock M, O’Sullivan E, Agha A, Behan LA, Rawluk D, Brennan P, et al. The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage. Clin Endocrinol (Oxf). 2006;64(3):250-4. https://doi.org/10.1111/j.1365-2265.2006.02432.x PMid:16487432 DOI: https://doi.org/10.1111/j.1365-2265.2006.02432.x
George U, Rathore S, Pandian JD, Singh Y. Diffuse pachymeningeal enhancement and subdural and subarachnoid space opacification on delayed postcontrast fluid-attenuated inversion recovery imaging in spontaneous intracranial hypotension: visualizing the Monro-Kellie hypothesis. Am J Neuroradiol. 2011;32(1):E16. https://doi.org/10.3174/ajnr.A2262 PMid:20864522 DOI: https://doi.org/10.3174/ajnr.A2262
Andres RH, Pendharkar AV, Kuhlen D, Mariani L. Ventricular enlargement due to acute hypernatremia in a patient with a ventriculoperitoneal shunt. J Neurosurg. 2010;113(1):82-4. https://doi.org/10.3171/2009.10.JNS09845 PMid:19911884 DOI: https://doi.org/10.3171/2009.10.JNS09845
Lenski M, Biczok A, Huge V, Forbrig R, Briegel J, Tonn JC, et al. Role of cerebrospinal fluid markers for predicting shunt-dependent hydrocephalus in patients with subarachnoid hemorrhage and external ventricular drain placement. World Neurosurg. 2019;121:e535-42. https://doi.org/10.1016/j.wneu.2018.09.159 PMid:30268545 DOI: https://doi.org/10.1016/j.wneu.2018.09.159
Peters SR, Tirschwell D. Timing of permanent ventricular shunt placement following external ventricular drain placement in primary intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2017;26(10):2120-7. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.04.033 PMid:28549914 DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.04.033
Esposito DP, Goldenberg FD, Frank JI, Ardelt AA, Roitberg BZ. Permanent cerebrospinal fluid diversion in subarachnoid hemorrhage: Influence of physician practice style. Surg Neurol Int. 2011;2:117. https://doi.org/10.4103/2152-7806.84241 PMid:21918732 DOI: https://doi.org/10.4103/2152-7806.84241
Suzuki H, Muramatsu M, Tanaka K, Fujiwara H, Kojima T, Taki W. Cerebrospinal fluid ferritin in chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurol. 2006;253(9):1170-6. https://doi.org/10.1007/s00415-006-0184-1 PMid:16649098 DOI: https://doi.org/10.1007/s00415-006-0184-1
Fang Y, Huang L, Wang X, Si X, Lenahan C, Shi H, Zhang JH. A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes. J Cerebral Blood Flow Metab. 2021;0271678X211045748. https://doi.org/10.1177/0271678X211045748 PMid:34806932 DOI: https://doi.org/10.1177/0271678X211045748
Lewis A, Irvine H, Ogilvy C, Kimberly WT. Predictors for delayed ventriculoperitoneal shunt placement after external ventricular drain removal in patients with subarachnoid hemorrhage. Br J Neurosurg. 2015;29(2):219-24. https://doi.org/10.3109/02688697.2014.967753 PMid:25299790 DOI: https://doi.org/10.3109/02688697.2014.967753
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Ahmed Elghity, Walid El Halaby, Wleed Raafat, Omar Sorour, Ahmed Atallah (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0