In vitro Investigation of Antibiotic Combinations against Multi- and Extensively Drug-Resistant Klebsiella pneumoniae

Authors

  • Elina Dobreva National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria https://orcid.org/0000-0002-2760-5689
  • Ivan Ivanov National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria https://orcid.org/0000-0002-2616-894X
  • Deyan Donchev National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria https://orcid.org/0000-0001-7447-7627
  • Krasimira Ivanova National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
  • Rumyana Hristova National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria https://orcid.org/0000-0003-1521-3597
  • Veselin Dobrinov National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
  • Veselin Dobrinov National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria https://orcid.org/0000-0002-7204-6492
  • Stefana Sabtcheva Specialized Hospital of Active Treatment of Oncology (National Oncology Center), Sofia, Bulgaria https://orcid.org/0000-0002-9694-2224
  • Todor Kantardjiev National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria

DOI:

https://doi.org/10.3889/oamjms.2022.8934

Keywords:

Antibiotic combinations, Interaction effect, Synergy

Abstract

Objectives: Community and hospital acquired K. pneumoniae infections have become a ubiquitous medical issue due to the limited treatment options and high mortality rate therefore the aims of this study are in vitro investigation of double antimicrobial combinations against multidrug resistant (MDR) and extensively drug resistant (XDR) isolates.

Materials and Methods: Antimicrobial susceptibility of twelve isolates from eight Bulgarian hospitals was determined to study the interaction effect of selected double combinations in accordance to fractional inhibitory concentration (FIC) method. Furthermore, the isolates were subjected to genotyping by Multilocus sequence typing (MLST) and detection of carbapenemase genes by multiplex PCR. The results were assessed by groups of strains with either NDM or KPC carbapenemase.

Results: Nine antimicrobial combinations: meropenem-colistin, meropenem-fosfomycin, meropenem-gentamicin, meropenem-rifampicin, meropenem-tigecycline, colistin-fosfomycin, colistin-gentamicin, colistin-rifampicin and colistin-tigecycline were tested for synergism on twelve K. pneumoniae, producing either KPC-2 (KPC-KP, 41.7%, 5/12) or NDM-1 (NDM-KP, 58.3%, 7/12). The isolates were distributed in three sequence types: ST11 (58.3%, 7/12), ST15 (25%, 3/12) and ST258 (16.7%, 2/12). All KPC-KP (ST258 and ST15) originated from three hospitals. The rest were NDM-1 carriers isolated from six hospitals and belonged to ST11. The highest synergistic effect was determined for MER-GEN (83.3%, 10/12) and COL-RIF (83.3%, 10/12). The MER-FOS combination was most efficient against NDM-KP, opposite to the KPC strains. Antagonism was not observed for any combinations.

Conclusions: The evaluated joint synergistic effect of the MER-GEN and COL-RIF may facilitate the treatment options for patients infected with NDM- and KPC-KP, whereas MER-FOS is highly synergetic against NDM-KP.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Chung PY. The emerging problems of Klebsiella pneumoniae infections: Carbapenem resistance and biofilm formation. FEMS Microbiol Lett. 2016;363(20):fnw219. https://doi.org/10.1093/femsle/fnw219 PMid:27664057 DOI: https://doi.org/10.1093/femsle/fnw219

Bi W, Liu H, Dunstan RA, Li B, Torres VV, Cao J, et al. Extensively drug-resistant Klebsiella pneumoniae causing nosocomial bloodstream infections in China: Molecular investigation of antibiotic resistance determinants, Informing therapy, and clinical outcomes. Front Microbiol. 2017;8:1230. https://doi.org/10.3389/fmicb.2017.01230 PMid:28713357 DOI: https://doi.org/10.3389/fmicb.2017.01230

Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: An increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020;19(1):1. https://doi.org/10.1186/s12941-019-0343-8 PMid:31918737 DOI: https://doi.org/10.1186/s12941-019-0343-8

Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis. 2015;2(2):ofv050. https://doi.org/10.1093/ofid/ofv050 PMid:26125030 DOI: https://doi.org/10.1093/ofid/ofv050

Jiang W, Yang W, Zhao X, Wang N, Ren H. Klebsiella pneumoniae presents antimicrobial drug resistance for β lactam through the ESBL/PBP signaling pathway. Exp Ther Med. 2020;19(4):2449-56. https://doi.org/10.3892/etm.2020.8498 PMid:32256721 DOI: https://doi.org/10.3892/etm.2020.8498

Reyes J, Aguilar AC, Caicedo A. Carbapenem-resistant Klebsiella pneumoniae: Microbiology key points for clinical practice. Int J Gen Med. 2019;12:437-46. https://doi.org/10.2147/ijgm.s214305 PMid:31819594 DOI: https://doi.org/10.2147/IJGM.S214305

European Centre for Disease Prevention. Antimicrobial Resistance in the EU/EEA (EARS-Net) Annual Epidemiological Report for 2019. Stockholm: European Centre for Disease Prevention; 2019.

European Centre for Disease Prevention. Point Prevalence Survey of Healthcare-associated Infections and Antimicrobial Use in European Acute Care Hospitals, 2016-2017. Stockholm: European Centre for Disease Prevention; 2017.

Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016;2016:2475067. https://doi.org/10.1155/2016/2475067 PMid:27274985 DOI: https://doi.org/10.1155/2016/2475067

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27. PMid:29276051

Flores-Paredes W, Luque N, Albornoz R, Rojas N, Espinoza M, Pons MJ, et al. Evolution of antimicrobial resistance levels of ESKAPE microorganisms in a peruvian IV-level hospital. Infect Chemother. 2021;53(3):449-62. https://doi.org/10.3947/ic.2021.0015 PMid:34508324 DOI: https://doi.org/10.3947/ic.2021.0015

Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252-75. https://doi.org/10.1093/femsre/fux013 PMid:28521338 DOI: https://doi.org/10.1093/femsre/fux013

Zhou C, Wang Q, Jin L, Wang R, Yin Y, Sun S, et al. In vitro synergistic activity of antimicrobial combinations against blaKPC and blaNDM-producing Enterobacterales with blaIMP or mcr Genes. Front Microbiol. 2020;11:533209. https://doi.org/10.3389/fmicb.2020.533209 PMid:33193122 DOI: https://doi.org/10.3389/fmicb.2020.533209

Savov E, Trifonova A, Kovachka K, Kjosseva E, Strateva T. Antimicrobial in vitro activities of ceftazidime-avibactam, meropenem-vaborbactam and plazomicin against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa-a pilot Bulgarian study. Infect Dis (Lond). 2019;51(11-12):870-3. https://doi.org/10.1080/23744235.2019.1653491 PMid:31433679 DOI: https://doi.org/10.1080/23744235.2019.1653491

Karaiskos I, Lagou S, Pontikis K, Rapti V, Poulakou G. The “old” and the “new” antibiotics for MDR Gram-negative pathogens: For whom, when, and how. Front Public Health. 2019;7:151. https://doi.org/10.3389/fpubh.2019.00151 PMid:31245348 DOI: https://doi.org/10.3389/fpubh.2019.00151

Marteva-Proevska Y, Velinov T, Markovska R, Dobrikova D, Pavlov I, Boyanova L, et al. Antibiotic combinations with colistin against carbapenem-resistant Klebsiella pneumoniae in vitro assessment. J IMAB. 2018;24(4):2258-66. https://doi.org/10.7546/crabs.2021.06.12 DOI: https://doi.org/10.7546/CRABS.2021.06.12

Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: Use beyond urinary tract and gastrointestinal infections. Clin Infect Dis. 2008;46(7):1069-77. https://doi.org/10.1086/527442 PMid:18444827 DOI: https://doi.org/10.1086/527442

Forrest GN, Tamura K. Rifampin combination therapy for nonmycobacterial infections. Clin Microbiol Rev. 2010;23(1):14-34. https://doi.org/10.1128/cmr.00034-09 PMid:20065324 DOI: https://doi.org/10.1128/CMR.00034-09

Benenson S, Navon-Venezia S, Carmeli Y, Adler A, Strahilevitz J, Moses AE, et al. Carbapenem-resistant Klebsiella pneumoniae endocarditis in a young adult. Successful treatment with gentamicin and colistin. Int J Infect Dis. 2009;13(5):e295-8. https://doi.org/10.1016/j.ijid.2009.01.006 PMid:19329345 DOI: https://doi.org/10.1016/j.ijid.2009.01.006

Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: A prospective evaluation. Clin Microbiol Infect. 2010;16(2):184-6. https://doi.org/10.1111/j.1469-0691.2009.02921.x PMid:19694767 DOI: https://doi.org/10.1111/j.1469-0691.2009.02921.x

Humphries RM, Kelesidis T, Bard JD, Ward KW, Bhattacharya D, Lewinski MA. Successful treatment of pan-resistant Klebsiella pneumoniae pneumonia and bacteraemia with a combination of high-dose tigecycline and colistin. J Med Microbiol. 2010;59(Pt 11):1383-6. https://doi.org/10.1099/jmm.0.023010-0 PMid:20688947 DOI: https://doi.org/10.1099/jmm.0.023010-0

Dalfino L, Puntillo F, Mosca A, Monno R, Spada ML, Coppolecchia S, et al. High-dose, extended-interval colistin administration in critically ill patients: Is this the right dosing strategy? a preliminary study. Clin Infect Dis. 2012;54(12):1720-6. https://doi.org/10.1093/cid/cis286 PMid:22423120 DOI: https://doi.org/10.1093/cid/cis286

Oliva A, Scorzolini L, Cipolla A, Mascellino MT, Cancelli F, Castaldi D, et al. In vitro evaluation of different antimicrobial combinations against carbapenemase-producing Klebsiella pneumoniae: The activity of the double-carbapenem regimen is related to meropenem MIC value. J Antimicrob Chemother. 2017;72(7):1981-4. https://doi.org/10.1093/jac/dkx084 PMid:28369424 DOI: https://doi.org/10.1093/jac/dkx084

Jacobs DM, Safir MC, Huang D, Minhaj F, Parker A, Rao GG. Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: A systematic review. Ann Clin Microbiol Antimicrob. 2017;16(1):76. https://doi.org/10.1186/s12941-017-0249-2 PMid:29178957 DOI: https://doi.org/10.1186/s12941-017-0249-2

Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895. https://doi.org/10.3389/fmicb.2016.00895 PMid:27379038 DOI: https://doi.org/10.3389/fmicb.2016.00895

Markovska R, Stoeva T, Boyanova L, Stankova P, Schneider I, Keuleyan E, et al. Multicentre investigation of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in Bulgarian hospitals interregional spread of ST11 NDM-1- producing K. pneumoniae. Infect Genet Evol. 2019;69:61-7. https://doi.org/10.1016/j.meegid.2019.01.013 PMid:30654179 DOI: https://doi.org/10.1016/j.meegid.2019.01.013

Mathers AJ. Antibiotics in laboratory medicine. Clin Infect Dis. 2015;60(9):1446-7. DOI: https://doi.org/10.1093/cid/civ078

Sueke H, Kaye SB, Neal T, Hall A, Tuft S, Parry CM. An in vitro investigation of synergy or antagonism between antimicrobial combinations against isolates from bacterial keratitis. Invest Ophthalmol Vis Sci. 2010;51(8):4151-5. https://doi.org/10.1167/iovs.09-4839 PMid:20335613 DOI: https://doi.org/10.1167/iovs.09-4839

Dundar D, Otkun M. In-vitro efficacy of synergistic antibiotic combinations in multidrug resistant Pseudomonas aeruginosa strains. Yonsei Med J. 2010;51(1):111-6. https://doi.org/10.3349/ymj.2010.51.1.111 PMid:20046523 DOI: https://doi.org/10.3349/ymj.2010.51.1.111

Eliopoulos GM, Eliopoulos CT. Abtibiotic combinations: Should they be tested? Clin Microbiol Rev. 1988;1(2):139-56. https://doi.org/10.1128/cmr.1.2.139 PMid:3069193 DOI: https://doi.org/10.1128/CMR.1.2.139

Todorova B, Sabtcheva S, Ivanov IN, Lesseva M, Chalashkanov T, Ioneva M, et al. First clinical cases of NDM- 1-producing Klebsiella pneumoniae from two hospitals in Bulgaria. J Infect Chemother. 2016;22(12):837-40. https://doi.org/10.1016/j.jiac.2016.03.014 PMid:27129373 DOI: https://doi.org/10.1016/j.jiac.2016.03.014

Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178-82. https://doi.org/10.1128/jcm.43.8.4178-4182.2005 PMid:16081970 DOI: https://doi.org/10.1128/JCM.43.8.4178-4182.2005

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x PMid:21793988 DOI: https://doi.org/10.1111/j.1469-0691.2011.03570.x

Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 2012;25(3):450-70. PMid:22763634 DOI: https://doi.org/10.1128/CMR.05041-11

David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919-29. https://doi.org/10.1038/s41564-019-0492-8 PMid:31358985 DOI: https://doi.org/10.1038/s41564-019-0492-8

Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: A systematic review. Lancet Infect Dis. 2010;10(1):43-50. https://doi.org/10.1016/s1473-3099(09)70325-1 PMid:20129148 DOI: https://doi.org/10.1016/S1473-3099(09)70325-1

Bassetti M, Repetto E, Righi E, Boni S, Diverio M, Molinari MP, et al. Colistin and rifampicin in the treatment of multidrug-resistant Acinetobacter baumannii infections. J Antimicrob Chemother. 2008;61(2):417-20. https://doi.org/10.1093/jac/dkm509 PMid:18174197 DOI: https://doi.org/10.1093/jac/dkm509

Food and Drug Administration. FDA Drug Safety Communication: Increased Risk of Death with Tygacil (Tigecycline) Compared to other Antibiotics Used to Treat Similar Infections. Silver Spring, Maryland: Food and Drug Administration; 2010.

De Pascale G, Montini L, Pennisi MA, Bernini V, Maviglia R, Bello G, et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit Care. 2014;18(3):R90. https://doi.org/10.1186/cc13858 PMid:24887101 DOI: https://doi.org/10.1186/cc13858

Berçot B, Poirel L, Dortet L, Nordmann P. In vitro evaluation of antibiotic synergy for NDM-1-producing Enterobacteriaceae. J Antimicrob Chemother. 2011;66(10):2295-7. https://doi.org/10.1093/jac/dkr296 PMid:21807739 DOI: https://doi.org/10.1093/jac/dkr296

Elemam A, Rahimian J, Doymaz M. In vitro evaluation of antibiotic synergy for polymyxin B-resistant carbapenemase-producing Klebsiella pneumoniae. J Clin Microbiol. 2010;48(10):3558-62. https://doi.org/10.1128/jcm.01106-10 PMid:20686085 DOI: https://doi.org/10.1128/JCM.01106-10

Downloads

Published

2022-04-05

How to Cite

1.
Dobreva E, Ivanov I, Donchev D, Ivanova K, Hristova R, Dobrinov V, Dobrinov V, Sabtcheva S, Kantardjiev T. In vitro Investigation of Antibiotic Combinations against Multi- and Extensively Drug-Resistant Klebsiella pneumoniae. Open Access Maced J Med Sci [Internet]. 2022 Apr. 5 [cited 2024 Nov. 12];10(B):1308-14. Available from: https://oamjms.eu/index.php/mjms/article/view/8934