The Effects of Star Fruit (Averrhoa carambola Linn.) Extract on Body Mass Index, Fasting Blood Glucose, and Triglyceride Levels in Male Rats with Obesity and Type 2 Diabetes Mellitus

Authors

  • Yustika Sari Department of Nutrition Sciences, Postgraduate Program, Universitas Sebelas Maret, Surakarta, Indonesia https://orcid.org/0000-0001-8691-6375
  • Dono Indarto Department of Nutrition Sciences, Postgraduate Program, Universitas Sebelas Maret, Surakarta, Indonesia; Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia; Department of Biomedical, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia https://orcid.org/0000-0001-7420-5816
  • Brian Wasita Department of Nutrition Sciences, Postgraduate Program, Universitas Sebelas Maret, Surakarta, Indonesia; Department of Anatomy Pathology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.8951

Keywords:

Methanol extract of star fruit, Fasting blood glucose, Triglyceride levels, Obesity, Type 2 diabetes mellitus

Abstract

BACKGROUND: Obesity is the main risk factor of diabetes by which induces insulin resistance. Epicatechin gallate can virtually interact with sodium-glucose co-transporter 2 as same as dapagliflozin and is found in green tea and star fruits.

AIM: This study aimed to investigate the effects of methanol extract of star fruit (MES) on body weight (BW), body mass index (BMI), fasting blood glucose (FBG), and triglyceride levels in male rats with obesity and type 2 diabetes mellitus (T2DM).

METHODS: Twenty-four male Sprague-Dawley rats were randomly assigned to normal and high-fat diet (HFD) groups. Obesity was induced with a HFD diet for 5 weeks and followed by induction of T2DM with 230 mg/kg BW nicotinamide and 65 mg/kg BW streptozotocin injections. Twenty-one obesity and T2DM rats were randomly assigned to negative control (n = 3) and the remaining rats in the MES1-3 groups, which were given 250, 500, and 1000 mg/kg BW/day MES. Data of BW, BMI, FBG, and triglyceride levels were collected at day 1, 14, and 28 interventions. Data were statistically analyzed using parametric and non-parametric tests with p < 0.05 considered significant.

RESULTS: The MES3 group (282.56 ± 10.75 g) had significantly lower mean BW than the MES2 group (331.33 ± 13.17 g, p = 0.035). The duration of MES administration significantly decreased BW (p = 0.009) and BMI (p = 0.034) compared with the negative control. The mean triglyceride levels in MES1 (93.72 ± 53.69 mg/dl, p = 0.020), MES2 (71.98 ± 35.72 mg/dl, p = 0.025), and MES3 (56.68 ± 16.37 mg/dl, p = 0.020) groups significantly lower than the control group (1042.13 ± 681.74 mg/dl) on day 14. The mean FBG levels in MES1 (437.85 ± 33.04 mg/dl) and MES2 (353 ± 33.04 mg/dl) groups were also lower than the control group (470.97 ± 33.04 mg/dl).

CONCLUSION: Administrations of 250, 500, and 1000 mg/kg BW/day MES decrease BW, BMI, and triglyceride level but increase FBG level in male rats with obesity and T2DM for 14 and 28 days.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

World Health Organization. Obesity and Overweight. Geneva: WHO Press; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. [Last accessed on 2022 Jan 27].

Organisation for Economic Co-operation and Development. The heavy burden of obesity. In: Cecchini M, Vuik S, editors. The Heavy Burden of Obesity – The Economics of Prevention. Paris: OECD Publishing; 2019. p. 16-39. https://doi.org/10.1787/67450d67-en DOI: https://doi.org/10.1787/67450d67-en

World Health Organization. Diabetes. Geneva: WHO Press; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes. [Last accessed on 2022 Jan 27].

International Diabetes Federation. In: Boyko EJ, Magliano DJ, Karuranga S, Piemonte L, Riley P, Saeedi P, et al., editors. IDF Diabetes Atlas. 10th ed. Brussels, Belgium: International Diabetes Federation; 2021. p. 1-135. Available from: https://www.diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf. [Last accessed on 2022 Jan 27].

Lotta L, Abbasi A, Sharp SJ, Sahlqvist AS, Waterworth D, Brosnan JM, et al. Definitions of metabolic health andrisk of future type 2 diabetes in bmi categories: A systematic review and network meta-analysis. Diabetes Care. 2015;38(11):2177-87. https://doi.org/10.2337/dc15-1218 PMid:26494809 DOI: https://doi.org/10.2337/dc15-1218

Wensveen FM, Valentić S, Šestan M, Turk Wensveen T, Polić B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur J Immunol. 2015;45(9):2446-56. https://doi.org/10.1002/eji.201545502 PMid:26220361 DOI: https://doi.org/10.1002/eji.201545502

Xu L, Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte. 2018;7(2):121-8. https://doi.org/10.108 0/21623945.2017.1413516 PMid:29376471

Itoh H, Tanaka M. “ Greedy Organs Hypothesis ” for sugar and salt in the pathophysiology of non-communicable diseases in relation to sodium-glucose co-transporters in the intestines and the kidney. Metabol Open. 2022;13:100169. https://doi.org/10.1016/j.metop.2022.100169 PMid: 351989479 DOI: https://doi.org/10.1016/j.metop.2022.100169

Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs. 2019;79(3):219-30. https://doi.org/10.1007/s40265-019-1057-0 PMid:30701480 DOI: https://doi.org/10.1007/s40265-019-1057-0

Whaley JM, Tirmenstein M, Reilly TP, Poucher SM, Saye J, Parikh S, et al. Targeting the kidney and glucose excretion with dapagliflozin: Preclinical and clinical evidence for SGLT2 inhibition as a new option for treatment of type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2012;5:135-48. https://doi.org/10.2147/DMSO.S22503 PMid:22923998 DOI: https://doi.org/10.2147/DMSO.S22503

Madaan T, Akhtar M, Najmi AK. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective. Eur J Pharm Sci. 2016;93:244-52. https://doi.org/10.1016/j.ejps.2016.08.025 PMid:27531551 DOI: https://doi.org/10.1016/j.ejps.2016.08.025

Neumiller JJ, White JR, Campbell RK. Sodium-glucose co-transport inhibitors: Progress and therapeutic potential in type 2 diabetes mellitus. Drugs. 2010;70(4):377-85. https://doi.org/10.2165/11318680-000000000-00000 PMid:20205482 DOI: https://doi.org/10.2165/11318680-000000000-00000

Perry RJ, Rabin-Court A, Song JD, Cardone RL, Wang Y, Kibbey RG, et al. Dehydration and insulinopenia are necessary and sufficient for euglycemic ketoacidosis in SGLT2 inhibitor-treated rats. Nat Commun. 2019;10(1):548. https://doi.org/10.1038/s41467-019-08466-w PMid:30710078 DOI: https://doi.org/10.1038/s41467-019-08466-w

Sa-nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43-50. https://doi.org/10.1016/j.taap.2017.08.005 PMid:28807765 DOI: https://doi.org/10.1016/j.taap.2017.08.005

Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020-31. https://doi.org/10.1210/jc.2011-2260 PMid:22238392 DOI: https://doi.org/10.1210/jc.2011-2260

Fan Y, Sahu SK, Yang T, Mu W, Wei J, Cheng L, et al. Dissecting the genome of star fruit (Averrhoa carambola L.). Hortic Res. 2020;7(1):1-19. https://doi.org/10.1101/851790 PMid:32528706 DOI: https://doi.org/10.1038/s41438-020-0306-4

Takabe W, Mitsuhashi R, Parengkuan L, Yagi M, Yonei Y. Cleaving effect of melatonin on crosslinks in advanced glycation end products. Glycative Stress Res. 2016;3(1):38-43. https://doi.org/10.24659/gsr.3.1_038

Luan F, Peng L, Lei Z, Jia X, Zou J, Yang Y, et al. Traditional uses, phytochemical constituents and pharmacological properties of Averrhoa carambola L.: A review. Front Pharmacol. 2021;12:699899. https://doi.org/10.3389/fphar.2021.699899 PMid:34475822 DOI: https://doi.org/10.3389/fphar.2021.699899

Hosoi S, Shimizu E, Arimori K, Okumura M, Hidaka M, Yamada M, et al. Analysis of CYP3A inhibitory components of star fruit (Averrhoa carambola L.) using liquid chromatography-mass spectrometry. J Nat Med. 2008;62(3):345-8. https://doi.org/10.1007/s11418-008-0239-y PMid:18404300 DOI: https://doi.org/10.1007/s11418-008-0239-y

Merinas-Amo T, Celestino MD, Font R, Alonso-Moraga Á. Safety and protective activities of manufactured alcohol-free beers. Processes. 2022;10(2):1-21. https://doi.org/10.3390/pr10020331 DOI: https://doi.org/10.3390/pr10020331

Amradani RA. Molecular Docking: Exploration of Sodium Glucose Co-transporter 2 Inhibitor from Indonesian Herbal Plants Compounds for Type 2 Diabetes Therapy (Mini Thesis); 2015. (Corpus ID: 59184324). Available from: https://www.semanticscholar.org/paper/Penambatan-Molekuler%3A-Eksplorasi-Inhibitor-Sodium-2-RafiAmandaRezkia/e6290145b92c6be5997e240a6c63c90e6e69972b. [Last accessed on 2022 Jan 11].

Kallithraka S, Garcia‐Viguera C, Bridle P, Bakker J. Survey of solvents for the extraction of grape seed phenolics. Phytochem Anal. 1995;6(5):265-7. https://doi.org/10.1002/pca.2800060509 DOI: https://doi.org/10.1002/pca.2800060509

Mohamed Rashid A, Lu K, Yip YM, Zhang D. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells. Food Funct. 2016;7(2):881-92. https://doi.org/10.1039/c5fo01208b PMid:26679488 DOI: https://doi.org/10.1039/C5FO01208B

Sari Y, Indarto D, Wasita B. Identification of epicatechin gallate and other phytochemicals in methanol extract of fresh and dried star-fruits (Averrhoa carambola Linn.) for treatment of type 2 diabetes mellitus. In: Muhammad M, Nurhaliza N, Turmono BA, editors. The 1st International Seminar on Teacher Training and Education 2021. Purwokerto, Indonesia: European Alliance for Innovation (EAI); 2021. p. 448-59. http://doi.org/10.4108/eai.17-7-2021.2312400 DOI: https://doi.org/10.4108/eai.17-7-2021.2312400

Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24(5):101-5. https://doi.org/10.21315/mjms2017.24.5.11 PMid:29386977 DOI: https://doi.org/10.21315/mjms2017.24.5.11

Ahmed MM, Samir ES, El-Shehawi AM, Alkafafy ME. Anti-obesity effects of Taif and Egyptian pomegranates: Molecular study. Biosci Biotechnol Biochem. 2015;79(4):598-609. https://doi.org/10.1080/09168451.2014.982505 PMid:25420097 DOI: https://doi.org/10.1080/09168451.2014.982505

Ramadhani DT, Rezkia Amradani RA, Ulfia M, Utami SM, Indarto D, Wasita B. The comparative effect of pomegranate peel extract and dapagliflozin on body weight of male albino wistar rats with type 2 diabetes mellitus. In: 9th Annual Basic Science International Conference 2019 (BaSIC 2019). Malang, Indonesia: IOP Publishing; 2019. p. 1-7. https://doi.org/10.1088/1757-899X/546/6/062023 DOI: https://doi.org/10.1088/1757-899X/546/6/062023

Cam ME, Hazar-Yavuz AN, Yildiz S, Ertas B, Ayaz Adakul B, Taskin T, et al. The methanolic extract of Thymus praecox subsp. skorpilii var. skorpilii restores glucose homeostasis, ameliorates insulin resistance and improves pancreatic β-cell function on streptozotocin/nicotinamide-induced type 2 diabetic rats. J Ethnopharmacol. 2019;231(11):29-38. https://doi.org/10.1016/j.jep.2018.10.028 PMid:30399410 DOI: https://doi.org/10.1016/j.jep.2018.10.028

Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Effects of hydrogen sulfide on carbohydrate metabolism in obese type 2 diabetic rats. Molecules. 2019;24(1):190. https://doi.org/10.3390/molecules24010190 PMid:30621352 DOI: https://doi.org/10.3390/molecules24010190

Sinaga DM. Effect of VCO and Results of Hydrolysis on Blood Glucose Levels and Lipid Profile in Mice Induced High Sucrose and Fat (Mini Thesis); 2018. Available from: https://www.repositori.usu.ac.id/bitstream/handle/123456789/5051/151524043.pdf?sequence=1&isAllowed=y. [Last accessed on 2022 Jan 25].

Nesti DR, Baidlowi A. Blood glucose and lipid profile and langerhans islet visualization as insulin and glucagon immunoreactor’s in obese rat pancreas (rattus norvegicus) with immunohistochemistry method. J Nas Teknol Terap. 2017;1(1):1-9. https://doi.org/10.22146/jntt.34083 DOI: https://doi.org/10.22146/jntt.34083

Sa’adah NN, Purwani KI, Nurhayati AP, Ashuri NM. Analysis of lipid profile and atherogenic index in hyperlipidemic rat (Rattus norvegicus Berkenhout, 1769) that given the methanolic extract of Parijoto (Medinilla speciosa). In: Murkovic M, Risuleo G, Prasetyo EN, Shovitri M, Nyanhongo GS, editors. Proceeding of International Biology Conference 2016: Biodiversity and Biotechnology for Human Welfare. Surabaya, Indonesia: AIP Publishing; 2017. p. 1-8. https://doi.org/10.1063/1.4985422 DOI: https://doi.org/10.1063/1.4985422

Henning SM, Yang J, Hsu M, Lee RP, Grojean EM, Ly A, et al. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur J Nutr. 2018;57(8):2759-69. https://doi.org/10.1007/s00394-017-1542-8 PMid:28965248 DOI: https://doi.org/10.1007/s00394-017-1542-8

Guo Y, Jiang N, Zhang L, Yin M. Green synthesis of gold nanoparticles from Fritillaria cirrhosa and its anti-diabetic activity on Streptozotocin induced rats. Arab J Chem. 2020;13(4):5096-106. https://doi.org/10.1016/j.arabjc.2020.02.009 DOI: https://doi.org/10.1016/j.arabjc.2020.02.009

Xia ZH, Zhang SY, Chen YS, Li K, Chen WB, Liu YQ. Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver. Food Chem Toxicol. 2020;146:111803. https://doi.org/10.1016/j.fct.2020.111803 PMid:33035629 DOI: https://doi.org/10.1016/j.fct.2020.111803

Jin D, Xu Y, Mei X, Meng Q, Gao Y, Li B, et al. Antiobesity and lipid lowering effects of theaflavins on high-fat diet induced obese rats. J Funct Foods. 2013;5(3):1142-50. https://doi.org/10.1016/j.jff.2013.03.011 DOI: https://doi.org/10.1016/j.jff.2013.03.011

Pham HT, Huang W, Han C, Li J, Xie Q, Wei J, et al. Effects of Averrhoa carambola L. (Oxalidaceae) juice mediated on hyperglycemia, hyperlipidemia, and its influence on regulatory protein expression in the injured kidneys of streptozotocin-induced diabetic mice. Am J Transl Res. 2017;9(1):36-49. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5250702/pdf/ ajtr0009-0036.pdf PMid:28123632

Aladaileh SH, Saghir SA, Murugesu K, Sadikun A, Ahmad A, Kaur G, et al. Antihyperlipidemic and antioxidant effects of Averrhoa carambola extract in high-fat diet-fed rats. Biomedicines. 2019;7(3):72. https://doi.org/10.3390/biomedicines7030072 PMid:31527433 DOI: https://doi.org/10.3390/biomedicines7030072

Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y, et al. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr. 2005;81(1):122-9. https://doi.org/10.1093/ajcn/81.1.122 PMid:15640470 DOI: https://doi.org/10.1093/ajcn/81.1.122

Li H, Fang Q, Nie Q, Hu J, Yang C, Huang T, et al. Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration. J Agric Food Chem. 2020;68(37):10015-28. https://doi.org/10.1021/acs.jafc.0c01968 PMid:32811143 DOI: https://doi.org/10.1021/acs.jafc.0c01968

Xu R, Bai Y, Yang K, Chen G. Effects of green tea consumption on glycemic control: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab. 2020;17(1):56. https://doi.org/10.1186%2Fs12986-020-00469-5 PMid:32670385 DOI: https://doi.org/10.1186/s12986-020-00469-5

Pang D, You L, Zhou L, Li T, Zheng B, Liu RH. Averrhoa carambola free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice. Food Funct. 2017;8(12):4496-507. https://doi.org/10.1039/c7fo00833c PMid:29090700 DOI: https://doi.org/10.1039/C7FO00833C

Downloads

Published

2022-04-18

How to Cite

1.
Sari Y, Indarto D, Wasita B. The Effects of Star Fruit (Averrhoa carambola Linn.) Extract on Body Mass Index, Fasting Blood Glucose, and Triglyceride Levels in Male Rats with Obesity and Type 2 Diabetes Mellitus. Open Access Maced J Med Sci [Internet]. 2022 Apr. 18 [cited 2024 Nov. 23];10(A):744-51. Available from: https://oamjms.eu/index.php/mjms/article/view/8951