South Sulawesi Milkfish (Chanos Chanos) Scale Waste as a New Anti-inflammatory Material in Socket Preservation
DOI:
https://doi.org/10.3889/oamjms.2022.8962Keywords:
Alveolar ridge augmentation, Chitosan, Tooth extraction, Wound healingAbstract
BACKGROUND: One of South Sulawesi’s huge brackish water fishery product is milkfish (Chanos chanos). Scales are wasted in milkfish processing. However, they are a good source of chitosan, which has been found to promote anti-inflammation, wound healing, and bone regeneration.
AIM: This study aims to determine the effect of milkfish scales waste on the inflammatory response of wound healing after tooth extraction by tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 analysis.
METHODS: This is a post-test-only control group design study. Thirty-two Cavia cobaya were divided into four groups: (1) Socket preservation using milkfish scales chitosan, (2) milkfish scales chitosan + bovine xenograft, (3) bovine xenograft as a positive control, and (4) placebo as a negative control, then were sacrificed on 3rd, 7th, 14th, and 28th days. The mandible jaw specimen was taken for immunohistochemical analysis to determine the levels of TNF-α and IL-6. The data were analyzed using the Kolmogorov–Smirnov test, Levene’s test, and one-way analysis of variance.
RESULTS: On days 3, 7, 14, and 28, groups with chitosan added showed lower levels of TNF-α and a faster decrease in IL-6 expressions compared to those without chitosan.
CONCLUSION: Milkfish scale chitosan suppresses TNF-α and IL-6 production, thus reducing inflammation in socket preservation.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Araújo MG, Silva CO, Misawa M, Sukekava F. Alveolar socket healing: What can we learn? Periodontol 2000. 2015;68(1):122-34. https://doi.org/10.1111/prd.12082 PMid:25867983 DOI: https://doi.org/10.1111/prd.12082
Farina R, Trombelli L. Wound healing of extraction sockets. Endod Top. 2011;25(1):16-43. https://doi.org/10.1111/etp.12016 DOI: https://doi.org/10.1111/etp.12016
Juodzbalys G, Stumbras A, Goyushov S, Duruel O, Tözüm TF. Morphological classification of extraction sockets and clinical decision tree for socket preservation/augmentation after tooth extraction: A systematic review. J Oral Maxillofac Res. 2019;10(3):e3. https://doi.org/10.5037/jomr.2019.10303 PMid:31620265 DOI: https://doi.org/10.5037/jomr.2019.10303
Pagni G, Pellegrini G, Giannobile W V, Rasperini G. Postextraction alveolar ridge preservation: Biological basis and treatments. Int J Dent. 2012;2012:151030. https://doi.org/10.1155/2012/151030 PMid:22737169 DOI: https://doi.org/10.1155/2012/151030
Lin HK, Pan YH, Salamanca E, Lin YT, Chang WJ. Prevention of bone resorption by ha/β-tcp + collagen composite after tooth extraction: A case series. Int J Environ Res Public Health. 2019;16(23):4616. https://doi.org/10.3390/ijerph16234616 PMid:31766327 DOI: https://doi.org/10.3390/ijerph16234616
Wijaksana IK, Prahasanti C, Bargowo L, Sukarsono RM, Krismariono A. OPG and RANKL expression in osteoblast culture after application of Osphronemus goramy fish scale collagen peptide. J Int Dent Med Res. 2021;14(2):618-22. https://doi.org/10.4103/denthyp.denthyp_153_20
Bargowo L, Wijaksana IK, Hadyan FZ, Riawan W, Supandi SK, Prahasanti C. Vascular endothelial growth factor and bone morphogenetic protein expression after induced by gurami fish scale collagen in bone regeneration. J Int Dent Med Res. 2021;14(1):141-4.
Prahasanti C, Krismariono A, Takanamita R, Wijaksana IK, Suardita K, Saskianti T, et al. Enhancement of osteogenesis using a combination of hydroxyapatite and stem cells from exfoliated deciduous teeth. J Int Dent Med Res. 2020;13(2):508-12. https://doi.org/10.12688/f1000research.25009.1 DOI: https://doi.org/10.12688/f1000research.25009.1
Wahjuningrum DA, Setyabudi, Bhardwaj A, Febriyanti SE, Soetjipta NL, Mooduto L. Property test of phosphate and hydroxyl groups from lates carcarifer fish scale as a candidate for synthetic hydroxyapatite using the ftir method. J Int Dental and Med Res 2021;14(2):489-93.
Krismariono A, Wiyono N, Prahasanti C. Viability test of fish scales collagen from Oshphronemus gouramy on osteoblast cell culture. J Int Dent Med Res. 2020;13(2):412-6. https://doi.org/10.4103/denthyp.denthyp_153_20 DOI: https://doi.org/10.4103/denthyp.denthyp_153_20
Ezoddini-Ardakani F, Azam AN, Yassaei S, Fatehi F, Rouhi G. Effects of chitosan on dental bone repair. Health. 2011;3(4):200-5. https://doi.org/10.4236/health.2011.34036 DOI: https://doi.org/10.4236/health.2011.34036
Muzzarelli R. Chitosan scaffolds for bone regeneration. In: Chitin, Chitosan, Oligosaccharides and Their Derivatives. United States: CRC Press; 2010. p. 223-39. https://doi.org/10.1201/ebk1439816035-c17 DOI: https://doi.org/10.1201/EBK1439816035-c17
Jennings JA, Bumgardner JD. Chitosan Based Biomaterials: Fundamentals. Vol. 1. Duxford: Elsevier; 2017.
Saini S, Dhiman A, Nanda S. Immunomodulatory properties of chitosan: Impact on wound healing and tissue repair. Endocr Metab Immune Disord Drug Targets. 2020;20(10):1611-23. https://doi.org/10.2174/1871530320666200503054605 PMid:32359344 DOI: https://doi.org/10.2174/1871530320666200503054605
Soeroso Y, Winiati BE, Boy BM, Sulijaya B, Prayitno SW. The prospect of chitosan on the osteogenesis of periodontal ligament stem cells. J Inter Dent Med Res. 2012;5:93-7.
Gupta A, Rattan V, Rai S. Efficacy of chitosan in promoting wound healing in extraction socket: A prospective study. J Oral Biol Craniofa c Res. 2019;9(1):91. https://doi.org/10.1016/j.jobcr.2018.11.001 PMid:30456164 DOI: https://doi.org/10.1016/j.jobcr.2018.11.001
Scala A, Lang NP, Schweikert MT, de Oliveira JA, Rangel-Garcia I, Botticelli D. Sequential healing of open extraction sockets. An experimental study in monkeys. Clin Oral Implants Res. 2014;25(3):288-95. https://doi.org/10.1111/clr.12148 PMid:23551527 DOI: https://doi.org/10.1111/clr.12148
Indrawati DW, Munadziroh E, Sulisetyawati TI, El Fadhlallah PM. Sponge amnion potential in post tooth extraction wound healing by interleukin-6 and bone morphogenetic protein-2 expression analysis: An animal study. Dent Res J. 2019;16(5):283. https://doi.org/10.4103/1735-3327.266089 PMid:31543933 DOI: https://doi.org/10.4103/1735-3327.266089
Rumengan IF, Suptijah P, Salindeho N, Wullur S, Luntungan AH. Nanokitosan Dari Sisik Ikan: Aplikasinya Sebagai Pengemas Produk Perikanan; 2018. p. 117.
Nur RM, Asy’ari A. The utilitation of fish scale waste as a chitosan. Agrikan. 2020;13(2):269. https://doi.org/10.29239/j.agrikan.13.2.269-273 DOI: https://doi.org/10.29239/j.agrikan.13.2.269-273
Achmad H, Ramadhany YF. Effectiveness of chitosan tooth paste from white shrimp (Litopenaeus vannamei) to reduce number of Streptococcus mutans in the case of early childhood caries. J Inter Dent Med Res. 2017;10(2):358-63. https://doi.org/10.2991/idsm-17.2018.11 DOI: https://doi.org/10.2991/idsm-17.2018.11
Aziz N, Gufran MN, Pitoyo W, Suhandi S. Utilization of chitosan extract from milkfish scale waste in the Makassar Strait in the manufacture of environmentally friendly bioplastics. J Adm Kebijak Kesehat Indones. 2017;1(1):56-61. https://doi.org/10.36722/sst.v6i2.782 DOI: https://doi.org/10.36722/sst.v6i2.782
Cadano JR, Jose M, Lubi AG, Maling JN, Moraga JS, Shi QY, et al. A comparative study on the raw chitin and chitosan yields of common bio-waste from Philippine seafood. Environ Sci Pollut Res Int. 2020;28(10):11954-61. https://doi.org/10.1007/s11356-020-08380-5 PMid:32198682 DOI: https://doi.org/10.1007/s11356-020-08380-5
Budirahardjo R. Fish scales as a potential material to accelerate the healing process of oral soft tissue, regeneration of dentin and alveolar bone. Stomatognatic. 2010;7(2):136-40https://doi.org/10.19184/stoma.v18i1.27966 DOI: https://doi.org/10.19184/stoma.v18i1.27966
Susanti N, Purwanti A. pembuatan kitosan dari limbah sisik ikan (variabel konsentrasi larutan NaOH dan Waktu Ekstraksi). J Inovasi Proses. 2020;5(1):40-5.
Gallo J, Raska M, Kriegova E. Inflammation and its resolution and the musculoskeletal system. J Orthop Translat 2017;10:52-67. https://doi.org/10.1016/j.jot.2017.05.007 DOI: https://doi.org/10.1016/j.jot.2017.05.007
Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. International J Mol Sci. 2019;20(23):6008. https://doi.org/10.3390/ijms20236008 PMid:31795299 DOI: https://doi.org/10.3390/ijms20236008
Achmad H, Djais AI, Jannah M, Carmelita AB, Uinarni H, Arifin EM, et al. Antibacterial chitosan of milkfish scales (Chanos chanos) on bacteria Prophyromonas gingivalis & Aggregatibacter actinomycetemcomitans. Syst Rev Pharm 2020;11(6):836-41.
Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Inter J Mol Sci. 2019;20(23):1-33. https://doi.org/10.3390/ijms20235889 PMid:31771245 DOI: https://doi.org/10.3390/ijms20235889
Kim S. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and antiinflammatory activities. Int J Polym Sci. 2018;2018:1708172. https://doi.org/10.1155/2018/1708172 DOI: https://doi.org/10.1155/2018/1708172
Adiana ID, Syafiar. The use of chitosan as a biomaterial in dentistry. Dentika Dent J. 2014;18(2):190-3. https://doi.org/10.32734/dentika.v18i2.2029 DOI: https://doi.org/10.32734/dentika.v18i2.2029
Prabu D, Ravichandiran S, Jacob B, Manipal S, Mohan R, Bharathwaj VV. Effectiveness of chitosan on oral wound healing: A systematic review. J Pharm Sci Res. 2019;11(10):3451-7.
Thangavelu A, Stelin KS, Vannala V, Mahabob N, Hayyan FM, Sundaram R. An overview of chitosan and its role in periodontics. J Pharma Bioallied Sci. 2021;13(Suppl 1):S15-8. https://doi.org/10.4103/jpbs.jpbs_701_20 PMid:34447035 DOI: https://doi.org/10.4103/jpbs.JPBS_701_20
Kmiec M, Pighinelli L, Tedesco M, Silva MM, Reis V. Chitosanproperties and applications in dentistry. Adv Tissue Eng Regen Med Open Access. 2017;2(4):205-11.
Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci. 2016;10(1):27-37. https://doi.org/10.1016/j.als.2016.04.001 DOI: https://doi.org/10.1016/j.als.2016.04.001
Oliveira M, Santos S, Oliveira M, Torres AL, Barbosa MA. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur Cell Mater. 2012;24:136-52. https://doi.org/10.22203/ecm.v024a10 PMid:22828991 DOI: https://doi.org/10.22203/eCM.v024a10
Chang SH, Lin YY, Wu GJ, Huang CH, Tsai GJ. Effect of chitosan molecular weight on anti-inflammatory activity in the RAW 264.7 macrophage model. Int J Biol Macromol. 2019;131:167-75. https://doi.org/10.1016/j.ijbiomac.2019.02.066 PMid:30771390 DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.066
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Arni Irawaty Djais, Surijana Mappangara, Asdar Gani, Harun Achmad, Sherly Endang, Jennifer Tjokro, Nurhadijah Raja (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0