Role of Curcumin as a Potential Immunomodulator to Adjunct Tuberculosis Treatment in Indonesia

Authors

  • Emir Gibraltar Faisal Undergraduate Medical Education Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0001-9467-3895
  • Shakira Amirah Undergraduate Medical Education Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia https://orcid.org/0000-0003-1480-6155
  • Sidik Maulana Professional Nurse Study Program, Faculty of Nursing, Universitas Padjadjaran, Bandung, West Java, Indonesia https://orcid.org/0000-0003-4520-1650
  • Maria Komariah Department of Fundamental in Nursing, Universitas Padjadjaran, Bandung, West Java, Indonesia https://orcid.org/0000-0003-1648-4882
  • Hesti Platini Department of Medical Surgical Nursing, Faculty of Nursing, Universitas Padjadjaran, Bandung, West Java, Indonesia https://orcid.org/0000-0002-5145-0605

DOI:

https://doi.org/10.3889/oamjms.2022.8981

Keywords:

Curcumin, Immune cells, Immunomodulator, Tuberculosis

Abstract

This study aimed to highlight and focus on curcumin’s role in enhancing the body defense mechanism against tuberculosis (TB) infection, using a narrative review. This review was identified by four search engines: PubMed, Science Direct, Research Gate, and Google Scholar. We found that as an immunomodulator, curcumin reduces the production of specific cytokines by inhibiting the transcription factor. In the same mechanism, curcumin also activates the host macrophages, dendritic maturation, and modulation of the antigen-presenting cell process. Curcumin also increases apoptosis as a defence mechanism against TB infection. Curcumin also increases B-cell proliferation and downregulates oxidative stress on B-cells. As results, curcumin is a potential immunomodulator that complements M. TB treatment, especially in Indonesia. It can be stated that curcumin is proven to be a promising strategy in complementing TB prevention also treatment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Kementrian Kesehatan Republik Indonesia. Hari Peringatan Tuberkulosis TB Sedunia atau World TB Day 2021. Tahun: Kementrian Kesehatan Republik Indonesial; 2021. https://doi.org/10.22236/utilitas.v2i1.4560 DOI: https://doi.org/10.22236/utilitas.v2i1.4560

World Health Organization. Global Tuberculosis Report 2020. Geneva: World Health Organization; 2020.

Jones-López EC, Acuña-Villaorduña C, Ssebidandi M, Gaeddert M, Kubiak RW, Ayakaka I, et al. Cough aerosols of Mycobacterium tuberculosis in the prediction of incident tuberculosis disease in household contacts. Clin Infect Dis. 2016;63(1):10-20. https://doi.org/10.1093/cid/ciw199 PMid:27025837 DOI: https://doi.org/10.1093/cid/ciw199

Adigun R, Singh R. Tuberculosis. Treasure Island, FL: StatPearls Publishing; 2020.

Knechel NA. Tuberculosis: Pathophysiology, clinical features, and diagnosis. Crit Care Nurse. 2009;29(2):34-43. https://doi.org/10.4037/ccn2009968 PMid:19339446 DOI: https://doi.org/10.4037/ccn2009968

Susilawati TN, Larasati R. A recent update of the diagnostic methods for tuberculosis and their applicability in Indonesia: A narrative review. Med J Indones. 2019;28(3):2589. https://doi.org/10.13181/mji.v28i3.2589 DOI: https://doi.org/10.13181/mji.v28i3.2589

Liang Y, Bai X, Zhang J, Song J, Yang Y, Yu Q, et al. Ag85A/ ESAT-6 chimeric DNA vaccine induces an adverse response in tuberculosis-infected mice. Mol Med Rep. 2016;14(2):1146-52. https://doi.org/10.3892/mmr.2016.5364 PMid:27279275 DOI: https://doi.org/10.3892/mmr.2016.5364

Peng X, Sun J. Mechanism of ESAT-6 membrane interaction and its roles in pathogenesis of Mycobacterium tuberculosis. Toxicon. 2016;116:29-34. https://doi.org/10.1016/j.toxicon.2015.10.003 PMid:26456678 DOI: https://doi.org/10.1016/j.toxicon.2015.10.003

Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C. Immunomodulators inspired by nature: A review on curcumin and echinacea. Molecules. 2018;23(11):2778. https://doi.org/10.3390/molecules23112778 PMid:30373170 DOI: https://doi.org/10.3390/molecules23112778

Jagetia GC, Aggarwal BB. “Spicing up” of the immune system by curcumin. J Clin Immunol. 2007;27(1):19-35. https://doi.org/10.1007/s10875-006-9066-7 PMid:17211725 DOI: https://doi.org/10.1007/s10875-006-9066-7

Subositi D, Wahyono S. Study of the genus curcuma in Indonesia used as traditional herbal medicines. Biodiversitas. 2019;20(5):1356-61. https://doi.org/10.13057/biodiv/d200527 DOI: https://doi.org/10.13057/biodiv/d200527

Kim G, Jang MS, Son YM, Seo MJ, Ji SY, Han SH, et al. Curcumin inhibits CD4(+) T cell activation, but augments CD69 expression and TGF-β1-mediated generation of regulatory T cells at late phase. PLoS One. 2013;8(4):62300. https://doi.org/10.1371/journal.pone.0062300 PMid:23658623 DOI: https://doi.org/10.1371/journal.pone.0062300

Bai X, Oberley-Deegan RE, Bai A, Ovrutsky AR, Kinney WH, Weaver M, et al. Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection. Respirology. 2016;21(5):951-7. https://doi.org/10.1111/resp.12762 PMid:27012592 DOI: https://doi.org/10.1111/resp.12762

Kim DH, Lee HG, Choi JM. Curcumin elevates TFH cells and Germinal center B cell response for antibody production in mice. Immune Netw. 2019;19(5):e35. https://doi.org/10.4110/in.2019.19.e35 PMid:31720046 DOI: https://doi.org/10.4110/in.2019.19.e35

Fiala M. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: Benefits of omega-3 with curcumin against cancer. Molecules. 2015;20(2):3020-6. https://doi.org/10.3390/molecules20023020 PMid:25685909 DOI: https://doi.org/10.3390/molecules20023020

Kim GY, Kim KH, Lee SH, Yoon MS, Lee HJ, Moon DO, et al. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets. J Immunol. 2005;174(12):8116-24. https://doi.org/10.4049/jimmunol.174.12.8116 PMid:15944320 DOI: https://doi.org/10.4049/jimmunol.174.12.8116

Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods. 2017;6(10):92. https://doi.org/10.3390/foods6100092 PMid:29065496 DOI: https://doi.org/10.3390/foods6100092

Ranjan D, Chen C, Johnston TD, Jeon H, Nagabhushan M. Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J Surg Res. 2004;121(2):171-7. https://doi.org/10.1016/j.jss.2004.04.004 PMid:15501456 DOI: https://doi.org/10.1016/j.jss.2004.04.004

Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001;480-481:243-68. https://doi.org/10.1016/s0027-5107(01)00183-x PMid:11506818 DOI: https://doi.org/10.1016/S0027-5107(01)00183-X

Li X, Liu X. Effect of curcumin on immune function of mice. J Huazhong Univ Sci Technol Med Sci. 2005;25(2):137-40. https://doi.org/10.1007/bf02873559 PMid:16116955 DOI: https://doi.org/10.1007/BF02873559

Shastri MD, Shukla SD, Chong WC, Dua K, Peterson GM, Patel RP, et al. Role of oxidative stress in the pathology and management of human tuberculosis. Oxid Med Cell Longev. 2018;2018:7695364. https://doi.org/10.1155/2018/7695364 PMid:30405878 DOI: https://doi.org/10.1155/2018/7695364

Bhaumik S, Jyothi MD, Khar A. Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells. FEBS Lett. 2000;483(1):78-82. https://doi.org/10.1016/s0014-5793(00)02089-5 PMid:11033360 DOI: https://doi.org/10.1016/S0014-5793(00)02089-5

Gao X, Kuo J, Jiang H, Deeb D, Liu Y, Divine G, et al. Immunomodulatory activity of curcumin: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro. Biochem Pharmacol. 2004;68(1):51-61. https://doi.org/10.1016/j.bcp.2004.03.015 PMid:15183117 DOI: https://doi.org/10.1016/j.bcp.2004.03.015

Yadav VS, Mishra KP, Singh DP, Mehrotra S, Singh VK. Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol. 2005;27(3):485-97. https://doi.org/10.1080/08923970500242244 PMid:16237958 DOI: https://doi.org/10.1080/08923970500242244

Lyadova IV, Panteleev AV. Th1 and Th17 cells in tuberculosis: Protection, pathology, and biomarkers. Mediators Inflamm. 2015;2015:854507. https://doi.org/10.1155/2015/854507 PMid:26640327 DOI: https://doi.org/10.1155/2015/854507

Mine Y, Miyashita K, Shahidi F. Nutrigenomics and Proteomics in Health and Disease: Food Factors and Gene Interactions. In: Mine Y, Miyashita K, Shahidi F, editors. New Jersey: John Wiley and Sons; 2009. p. 412. DOI: https://doi.org/10.1002/9780813807263

Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev. 2015;264(1):167-81. https://doi.org/10.1111/imr.12276 PMid:25703559 DOI: https://doi.org/10.1111/imr.12276

Downloads

Published

2022-04-29

How to Cite

1.
Faisal EG, Amirah S, Maulana S, Komariah M, Platini H. Role of Curcumin as a Potential Immunomodulator to Adjunct Tuberculosis Treatment in Indonesia. Open Access Maced J Med Sci [Internet]. 2022 Apr. 29 [cited 2024 Nov. 26];10(F):326-31. Available from: https://oamjms.eu/index.php/mjms/article/view/8981

Issue

Section

Narrative Review Article

Categories