Wolbachia in Dengue Control: A Systematic Review


  • Nor Rumaizah Mohd Nordin Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
  • Fadly Shah Arsad Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
  • Muhammad Hilmi Mahmud Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
  • Puteri Sofia Nadira Megat Kamaruddin Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
  • Siti Maisara Amir Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
  • Nor Izyani Bahari Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
  • Mohd Rohaizat Hassan Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia; Borneo Medical and Health Research Centre (BMHRC), Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
  • Syed Sharizman Syed Abdul Rahim Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia https://orcid.org/0000-0002-9090-2563
  • Khamisah Awang Lukman Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
  • Mohammad Saffree Jeffree Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia




Aedes aegypti, Dengue, Endemic, Transmission, Wolbachia


BACKGROUND: Dengue fever outbreaks have been an important public health issue causing high morbidity and mortality, and serious economic effects, particularly in Asia. Control strategies are a challenge to be implemented due to a variety of factors. However, new approaches such as Wolbachia-infected Aedes aegypti have been shown to successfully lowering the life spans of the mosquito, eggs resistance, and disease transmission capabilities. Field trials are still on-going, and there are data to support its benefit in a large population. This systematic review aims to determine the current progress and impact of using Wolbachia in curbing dengue cases in high dengue case locations worldwide.

METHODOLOGY: The study uses the Preferred Reporting Items for Systematic reviews and Meta-Analyses review protocol, while the formulation of the research question was based on population of interest, comparison, and outcome. The selected databases include Web of Science, Scopus, PubMed, SAGE, and EBSCOhost. A thorough identification, screening, and included process were done and the results retrieved four articles. These articles were then ranked based on quality using mixed methods appraisal tool.

RESULTS: A total of four articles were included from 2019 and 2020 reports in both dengue- and non-dengue-endemic settings. In this review, comparisons in terms of the hierarchy of the study design, community engagement and acceptance, Wolbachia-infected A. aegypti deployment, entomological outcome, and epidemiological outcomes were detailed. All four studies showed a decrease in dengue incidence in Wolbachia-intervention populations.

CONCLUSION: Wolbachia programs have been shown to be an effective method in combating dengue diseases. Strong community engagement and involvement from multidisciplinary teams are important factors to ensure the effectiveness and good outcomes of the program.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Salim NA, Wah YB, Smith M, Yaacob WF, Mudin RN, Dapari R, et al. Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques. Sci Rep. 2021;11(1):939. https://doi.org/10.1038/s41598-020-79193-2 PMid:33441678 DOI: https://doi.org/10.1038/s41598-020-79193-2

Shepard DS, Undurraga EA, Halasa YA. Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis. 2013;7(2):e2055. https://doi.org/10.1371/journal.pntd.0002055 PMid:23437406 DOI: https://doi.org/10.1371/journal.pntd.0002055

World Health Organization. Dengue and Severe Dengue. 2021. Geneva: World Health Organization. Available from: https://www.who.int/health-topics/dengue-and-severe-dengue#tab=tab_1 [Last accessed on 2021 Aug 8].

Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: An analysis from the global burden of disease study 2013. Lancet Infect Dis. 2016;16(6):712-23. https://doi.org/10.1016/S1473-3099(16)00026-8 PMid:26874619 DOI: https://doi.org/10.1016/S1473-3099(16)00026-8

Zeng Z, Zhan J, Chen L, Chen H, Cheng S. Global, regional, and national dengue burden from 1990 to 2017: A systematic analysis based on the global burden of disease study 2017. EClinicalMedicine. 2021;32:100712. https://doi.org/10.1016/j.eclinm.2020.100712 PMid:33681736 DOI: https://doi.org/10.1016/j.eclinm.2020.100712

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. https://doi.org/10.1038/nature12060 PMid:23563266 DOI: https://doi.org/10.1038/nature12060

Kaur N, Rahim SS, Jaimin JJ, Dony JJ, Khoon KT, Ahmed K. The east coast districts are the possible epicenter of severe dengue in Sabah. J Physiol Anthropol. 2020;39(1):19. DOI: https://doi.org/10.1186/s40101-020-00230-0

Kaur N, Zakaria MA, Rahim SS, Ibrahim MY. Dengue outbreak management field experience in managing dengue involving an Urban residential area in Kota Kinabalu, Sabah Malaysia. Borneo Epidemiol J. 2021;2(1):36-44. https://doi.org/10.51200/bej.v2i1.3240 DOI: https://doi.org/10.51200/bej.v2i1.3240

Tan W, Liew JW, Selvarajoo S, Lim XY, Foo CJ, Refai WF, et al. Inapparent dengue in a community living among denguepositive Aedes mosquitoes and in a hospital in Klang Valley, Malaysia. Acta Trop. 2020;204:105330. https://doi.org/10.1016/j.actatropica.2020.105330 PMid:31917959 DOI: https://doi.org/10.1016/j.actatropica.2020.105330

Wolbachia Malaysia. Dengue, Zika and Chikungunya Scenario in Malaysia. Malaysia: Institute for Medical Research; 2017. Available from: https://www.imr.gov.my/wolbachia/2017/01/16/malaysiandengue-and-zika-scenario/ [Last accessed on 2021 Aug 04].

Selvarajoo S, Liew JW, Tan W, Lim XY, Refai WF, Zaki RA, et al. Knowledge, attitude and practice on dengue prevention and dengue seroprevalence in a dengue hotspot in Malaysia: A cross-sectional study. Sci Rep. 2020;10(1):9534. https://doi.org/10.1038/s41598-020-66212-5 PMid:32533017 DOI: https://doi.org/10.1038/s41598-020-66212-5

Jeffery JAL, Yen NT, Nam VS, Nghia LT, Hoffmann AA, Kay BH, et al. Characterizing the Aedes aegypti population in a vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue. PLoS Negl Trop Dis. 2009;3(11):e552. https://doi.org/10.1371/journal.pntd.0000552 PMid:19956588 DOI: https://doi.org/10.1371/journal.pntd.0000552

World Health Organization. Guideline for Dengue Surveillance and Mosquito Control. Genena: World Health Organization; 2003.

Maluda MC, Rahim SS, Tha NO, Dony JF, Khoon KT, Ibrahim MY, et al. Factors associated with dengue fever patients attending primary health clinics in Kota Kinabalu. Bangladesh J Med Sci. 2021;20(4):878-86. DOI: https://doi.org/10.3329/bjms.v20i4.54148

Sham NS, Sharizman SA, Faridah A. Trend of dengue virus serotype in Selangor, Malaysia: A descriptive study. 2018;15(2):127-38. Available from: https://doi.org/10.17654/BS015020127 DOI: https://doi.org/10.17654/BS015020127

Azhar ZI, Jusoh A, Rahim SS, Hassan MR, Safian N, Shah SA. Temporal spatial distribution of dengue and implications on control in Hulu Langat, Selangor, Malaysia. Dengue Bull. 2016;39:19-31.

Majid MS, Hassan MR, Wan Ismail WR, Manah AM, Rahim SS, Jeffree MS. Ecological analysis of five years dengue cases and outbreaks in Keningau, Sabah, Malaysia. Malaysian J Med Health Sci. 2020;16(4):2636-9346.

Lee HL, Rohani A, Khadri MS, Nazni WA, Rozilawati H, Nurulhusna AH, et al. Dengue vector control in Malaysia challenges and recent advances. Int Med J Malaysia. 2015;14(1):11-6. DOI: https://doi.org/10.31436/imjm.v14i1.448

Wan Ismail WR, Majid MS, Madrim MF, Rahim SS, Ghazi HF, Azhar ZI, et al. Safety of dengue vaccine (CYD-TDV) in Asia: A systematic review. Russ J Infect Immun. 2021;11(3):447-53. https://doi.org/10.15789/2220-7619-SOD-1297 DOI: https://doi.org/10.15789/2220-7619-SOD-1297

Carrington LB, Leslie J, Weeks AR, Hoffmann AA. The popcorn Wolbachia infection of Drosophila melanogaster: Can selection alter Wolbachia longevity effects? Evolution. 2009;63(10):2648-57. https://doi.org/10.1111/j.1558-5646.2009.00745.x PMid:19500146 DOI: https://doi.org/10.1111/j.1558-5646.2009.00745.x

Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell. 2009;139:1268-78. https://doi.org/10.1016/j.cell.2009.11.042 PMid:20064373 DOI: https://doi.org/10.1016/j.cell.2009.11.042

Turelli M. Cytoplasmic incompatibility in populations with overlapping generations. Evolution. 2010;64(1):232-41. https://doi.org/10.1111/j.1558-5646.2009.00822.x PMid:19686264 DOI: https://doi.org/10.1111/j.1558-5646.2009.00822.x

McMeniman CJ, Neill SL. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis. 2010;4(7):e748. https://doi.org/10.1371/journal.pntd.0000748 PMid:20644622 DOI: https://doi.org/10.1371/journal.pntd.0000748

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906. https://doi.org/10.1016/j.ijsu.2021.105906 PMid:33789826 DOI: https://doi.org/10.1016/j.ijsu.2021.105906

Pollock A, Berge E. How to do a systematic review. Int J Stroke. 2018;13(2):138-56. https://doi.org/10.1177/1747493017743796. PMid:29148960 DOI: https://doi.org/10.1177/1747493017743796

Flemming K, Booth A, Garside R, Tunçalp Ö, Noyes J. Qualitative evidence synthesis for complex interventions and guideline development: Clarification of the purpose, designs and relevant methods. BMJ Glob Health. 2019;4(Suppl 1):e000882. https://doi.org/10.1136/bmjgh-2018-000882 PMid:30775015 DOI: https://doi.org/10.1136/bmjgh-2018-000882

Vaismoradi M, Turunen H, Bondas T. Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nurs Health Sci. 2013;15(3):398-405. https://doi.org/10.1111/nhs.12048 PMid:23480423 DOI: https://doi.org/10.1111/nhs.12048

Hong QN, Pluye P, Fàbregues S, Bartlett G, Boardman F, Cargo M, et al. Mixed methods appraisal tool (MMAT), version 2018. Registration of Copyright. No. 1148552. Industry Canada: Canadian Intellectual Property Office; 2018.

Indriani C, Tantowijoyo W, Rancès E, Andari B, Prabowo E, Yusdi D, et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: A quasi-experimental trial using controlled interrupted time series analysis. J Gates Open Res. 2020;4:50. https://doi.org/10.12688/gatesopenres.13122.1 PMid:32803130 DOI: https://doi.org/10.12688/gatesopenres.13122.1

Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr Biol. 2019;29(24):4241-8.e5. https://doi.org/10.1016/j.cub.2019.11.007 PMid:31761702 DOI: https://doi.org/10.1016/j.cub.2019.11.007

O’ Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K, Iturbe-Ormaetxe I, et al. Scaled deployment of Wolbachia to protect the community from dengue and other aedes transmitted arboviruses. Gates Open Res. 2018;2:36. https://doi.org/10.12688/gatesopenres.12844.3 PMid:30596205 DOI: https://doi.org/10.12688/gatesopenres.12844.2

Ryan PA, Turley AP, Wilson G, Hurst TP, Retzki K, Brown-Kenyon J, et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in Northern Queensland, Australia. J Gates open Res. 2019;3:1547. https://doi.org/10.12688/gatesopenres.13061.2 PMid:31667465 DOI: https://doi.org/10.12688/gatesopenres.13061.1

Ottesen EA, Hooper PJ, Bradley M, Biswas G. The global programme to eliminate lymphatic filariasis: Health impact after 8 years. PLoS Negl Trop Dis. 2008;2(10):e317. DOI: https://doi.org/10.1371/journal.pntd.0000317

Huang YJ, Higgs S, Vanlandingham DL. Biological control strategies for mosquito vectors of arboviruses. Insects. 2017;8(1):21. https://doi.org/10.3390/insects8010021 PMid:28208639 DOI: https://doi.org/10.3390/insects8010021

Cardona-Salgado D, Campo-Duarte DE, Sepulveda-Salcedo LS, Vasilieva O, Svinin M. Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains. Math Biosci Eng. 2021;18(3):2952-90. https://doi.org/10.3934/mbe.2021149 PMid:33892579 DOI: https://doi.org/10.3934/mbe.2021149

Manokaran G, Flores HA, Dickson CT, Narayana VK, Kanojia K, Dayalan S, et al. Modulation of acyl-carnitines, the broad mechanism behind Wolbachia-mediated inhibition of medically important flaviviruses in Aedes aegypti. Proc Natl Acad Sci USA. 2020;117(39):24475-83. https://doi.org/10.1073/pnas.1914814117 PMid:32913052 DOI: https://doi.org/10.1073/pnas.1914814117

Schell SF, Luke DA, Schooley MW, Elliott MB, Herbers SH, Mueller NB, et al. Public health program capacity for sustainability: A new framework. Implement Sci. 2013;8(1):15. https://doi.org/10.1186/1748-5908-8-15 DOI: https://doi.org/10.1186/1748-5908-8-15

Brady OJ, Kharisma DD, Wilastonegoro NN, O’Reilly KM, Hendrickx E, Bastos LS, et al. The cost-effectiveness of controlling dengue in Indonesia using wMel Wolbachia released at scale: A modelling study. BMC Med. 2020;18(1):186. https://doi.org/10.1186/s12916-020-01638-2 PMid:32641039 DOI: https://doi.org/10.1186/s12916-020-01638-2

Abeyasuriya KG, Nugapola NW, Perera MD, Karunaratne WA, Karunaratne SH. Effect of dengue mosquito control insecticide thermal fogging on non-target insects. Int J Trop Insect Sci. 2017;37(1):11-8. https://doi.org/10.1017/S1742758416000254 DOI: https://doi.org/10.1017/S1742758416000254

Liew C, Soh LT, Chen I, Li X, Sim S, Ng LC. Community Engagement for Wolbachia-Based Aedes aegypti Population Suppression for Dengue Control: The Singapore Experience. In: Area-Wide Integrated Pest Management. Boca Raton: CRC Press; 2021. p. 747-61. DOI: https://doi.org/10.1201/9781003169239-42

Costa GB, Smithyman R, O’Neill SL, Moreira LA. How to engage communities on a large scale? Lessons fro m world mosquito program in Rio de Janeiro, Brazil. Gate Open Res. 2020;4:109. https://doi.org/10.12688/gatesopenres.13153.2 PMid:33103066 DOI: https://doi.org/10.12688/gatesopenres.13153.1

Palmer JRB, Oltra A, Collantes F, Delgado JA, Lucientes J, Delacour S, et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat Commun. 2017;8(1):916. https://doi.org/10.1038/s41467-017-00914-9 DOI: https://doi.org/10.1038/s41467-017-00914-9

Mwangungulu SP, Sumaye RD, Limwagu AJ, Siria DJ, Kaindoa EW, Okumu FO. Crowdsourcing vector surveillance: Using community knowledge and experiences to predict densities and distribution of outdoor-biting mosquitoes in rural Tanzania. PLoS One. 2016;11(6):e0156388. https://doi.org/10.1371/journal.pone.0156388 DOI: https://doi.org/10.1371/journal.pone.0156388

Ritchie SA, Van den Hurk AF, Smout MJ, Staunton KM, Hoffmann AA. Mission accomplished? We need a guide to the ‘post release’world of Wolbachia for Aedes-borne disease control. J Trends Parasitol. 2018;34(3):217-26. https://doi.org/10.1016/j.pt.2017.11.011 PMid:29396201 DOI: https://doi.org/10.1016/j.pt.2017.11.011




How to Cite

Nordin NRM, Arsad FS, Mahmud MH, Kamaruddin PSNM, Amir SM, Bahari NI, Hassan MR, Rahim SSSA, Lukman KA, Jeffree MS. Wolbachia in Dengue Control: A Systematic Review. Open Access Maced J Med Sci [Internet]. 2022 Aug. 17 [cited 2024 Jul. 24];10(F):501-12. Available from: https://oamjms.eu/index.php/mjms/article/view/9014



Systematic Review Article


Most read articles by the same author(s)