Antidepressant Activity of Curcuma heyneana
DOI:
https://doi.org/10.3889/oamjms.2022.9051Keywords:
Antidepressant, Curcuma heyneana, Immobility time, Locomotor activity, Blood glucose, Gastric injuryAbstract
BACKGROUND: The resistance to depression therapy remains high, and therapy failure leads to suicide. Curcuma heyneana (C. heyneana) is a plant of Zingiberaceae. Conventionally, the rhizome has been used as an anxiolytic and sedative. However, the activity as antidepression has never been conducted.
AIM: Therefore, this research was aimed to investigate the antidepressant activity of C. heyneana rhizome.
METHODS: This research was conducted using male mice aged 2–3 months. Chronic mild stress for 14 days was used to induce depression, followed by administration of the extract at 50, 100, and 200 mg/kg for 10 days. Evaluation of antidepression was carried out using tail suspension test (TST), forced swim test (FST), open field test (OFT), and blood glucose and injury of gastric. Sertraline at the dose of 6.5 mg/kg was used as a positive control.
RESULTS: The result revealed that stress induction for 14 days causes decreasing in locomotor activity and increased immobility. The extract administration at the doses of 100 and 200 mg/kg showed increased locomotor activity, which can be seen from the elevation of the central square and cross in the OFT (p < 0.05). The extract also decreased immobility in the tail suspension and FSTs (p < 0.05). Furthermore, the extract also prevents increases in blood glucose and gastric irritation.
CONCLUSION: Extract of C. heyneana rhizome at the doses of 100 and 200 mg/kg has antidepressant activity by increasing locomotor activity, decreasing immobility time, and preventing elevation of blood glucose and gastric injury.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Delgado PL. Depression: The case for a monoamine deficiency. J Clin Psychiatry. 2000;61(6):7-11. PMid:10775018
Teter CJ, Kando JC. Major depressive disorder. In: Dipiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG PL, editors. Pharmacotherapy, Pathophysiologic Approach. 8th ed. United States: McGraw-Hill; 2011. p. 1173-90.
Alexander RC, Preskorn S. Clinical pharmacology in the development of new antidepressants: The challenges. Curr Opin Pharmacol. 2014;14:6-10. PMid:24565005 DOI: https://doi.org/10.1016/j.coph.2013.09.016
Rush AJ, Fava M, Wisniewski SR, Lavori PW, Trivedi MH, Sackeim HA, et al. Sequenced treatment alternatives to relieve depression (STAR* D): Rationale and design. Control Clin Trials. 2004;25(1):119-42. https://doi.org/10.1016/s0197-2456(03)00112-0 PMid:15061154 DOI: https://doi.org/10.1016/S0197-2456(03)00112-0
Agoes A. Tanaman Obat Indonesia. Jakarta: Salemba Medika; 2010. p. 99-100. DOI: https://doi.org/10.4324/9780203710555-8
Evizal R. Tanaman Rempah dan Fitofarmaka. Lampung: Lembaga Penelitian Universitas Lampung; 2013. p. 30-1.
Yadav SK, Sah AK, Jha RK, Sah P, Shah DK. Turmeric (curcumin) remedies gastroprotective action. Pharmacogn Rev. 2013;7(13):42-6. https://doi.org/10.4103/0973-7847.112843 PMid:23922455 DOI: https://doi.org/10.4103/0973-7847.112843
Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods. 2017;6(10):92. https://doi.org/10.3390/foods6100092 PMid:29065496 DOI: https://doi.org/10.3390/foods6100092
Marianne M, Khairunnisa K, Wilda W. Analgesic activity of ethanol extract of temu giring rhizome (Curcuma heyneana Val and Zijp) in mice. Indonesian J Pharm ClinRes. 2018;1(2):9-13. https://doi.org/10.32734/idjpcr.v1i2.535 DOI: https://doi.org/10.32734/idjpcr.v1i2.535
Marianne M, Harahap U, Hasibuan PA, Thampati CM, Harefa HS. Hepatoprotective activity of the ethanol extract of Curcuma heyneana rhizome on isoniazid and rifampin-induced liver injury rats. J Herb Med Pharmacol. 2020;9(4):333-8. https://doi.org/10.34172/jhp.2020.42 DOI: https://doi.org/10.34172/jhp.2020.42
Kusumawati I, Kurniawan KO, Rullyansyah S, Prijo TA, Widyowati R, Ekowati J, et al. Anti-aging properties of Curcuma heyneana Valeton and Zipj: A scientific approach to its use in Javanese tradition. J Ethnopharmacol. 2018;225:64-70. https://doi.org/10.1016/j.jep.2018.06.038 PMid:30008394 DOI: https://doi.org/10.1016/j.jep.2018.06.038
Diastuti H, Syah YM, Juliawaty LD, Singgih M. Antibacterial activity of germacrane type sesquiterpenes from Curcuma heyneana rhizomes. Indones J Chem. 2014;14(1):32-6. https://doi.org/10.22146/ijc.21264 DOI: https://doi.org/10.22146/ijc.21264
Widyowati R, Agil M. Chemical constituents and bioactivities of several Indonesian plants typically used in Jamu. Chem Pharm Bull. 2018;66(5):506-18. https://doi.org/10.1248/cpb.c17-00983 PMid:29710047 DOI: https://doi.org/10.1248/cpb.c17-00983
Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of curcuma longa: A review of preclinical and clinical research. Altern Med Rev. 2009;14(2):141-53. PMid:19594223
Hritcu L, Ionita R, Postu PA, Gupta GK, Turkez H, Lima TC, et al. Antidepressant flavonoids and their relationship with oxidative stress. Oxid Med Cell Longev. 2017;2017:5762172. https://doi.org/10.1155/2017/5762172 DOI: https://doi.org/10.1155/2017/5762172
Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacology (Berl). 2008;201(3):435-42. https://doi.org/10.1007/s00213-008-1300-y PMid:18766332 DOI: https://doi.org/10.1007/s00213-008-1300-y
Kulkarni SK, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. Sci World J. 2009;9:1233-41. https://doi.org/10.1100/tsw.2009.137 PMid:19882093 DOI: https://doi.org/10.1100/tsw.2009.137
Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, et al. Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav. 2005;82(1):200-6. https://doi.org/10.1016/j.pbb.2005.08.009 PMid:16171853 DOI: https://doi.org/10.1016/j.pbb.2005.08.009
Kementrian Kesehatan Republik Indonesia. Farmakope Herbal Indonesia. 2nd ed. Jakarta: Kementerian Kesehatan Republik Indonesia; 2017. p. 481-4, 527-8. https://doi.org/10.6066/jtip.2013.24.2.121 DOI: https://doi.org/10.6066/jtip.2013.24.2.121
Farnsworth NR. Biological and phytochemical screening of plants. J Pharm Sci 1966;55:22576. PMid:5335471 DOI: https://doi.org/10.1002/jps.2600550302
Frisbee JC, Brooks SD, Stanley SC, d’Audiffret AC. An unpredictable chronic mild stress protocol for instigating depressive symptoms, behavioral changes and negative health outcomes in rodents. J Vis Exp. 2015;106:e53109. https://doi.org/10.3791/53109 PMid:26650668 DOI: https://doi.org/10.3791/53109
Rahman J, Tareq AM, Hossain M, Sakib SA, Islam MN, Ali M, Uddin AB, et al. Biological evaluation, DFT calculations and molecular docking studies on the antidepressant and cytotoxicity activities of Cycas pectinata Buch.-Ham. Compounds. Pharmaceuticals. 2020;13(9):232. https://doi.org/10.3390/ph13090232 PMid:32899148 DOI: https://doi.org/10.3390/ph13090232
Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85(3):367-70. https://doi.org/10.1007/bf00428203 PMid:3923523 DOI: https://doi.org/10.1007/BF00428203
Gould TD, Dao DT, Kovacsics CE. Open Field Test. United States: Humana Press; 2009. p. 1-4. DOI: https://doi.org/10.1007/978-1-60761-303-9_1
Carola V, D’Olimpio F, Brunamonti E, Mangia F, Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res. 2002;134(1-2):49-57. https://doi.org/10.1016/s0166-4328(01)00452-1 PMid:12191791 DOI: https://doi.org/10.1016/S0166-4328(01)00452-1
Choleris E, Thomas AW, Kavaliers M, Prato FS. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev. 2001;25(3):235-60. https://doi.org/10.1016/s0149-7634(01)00011-2 PMid:11378179 DOI: https://doi.org/10.1016/S0149-7634(01)00011-2
Porsolt R, Le Pichon M, Jalfre M. Depression: A new animal model sensitive to antidepressant treatments. Nature. 1977;266:730-2. https://doi.org/10.1038/266730a0 PMid:559941 DOI: https://doi.org/10.1038/266730a0
Aslani S, Vieira N, Marques F, Costa PS, Sousa N, Palha JA. The effect of high-fat diet on rat’s mood, feeding behavior and response to stress. Transl Psychiatry. 2015;5(11):e684. https://doi.org/10.1038/tp.2015.178 PMid:26795748 DOI: https://doi.org/10.1038/tp.2015.178
Fox SI. Human Physiology. New York: McGraw Hill; 2006. p. 326.
Guan LP, Liu BY. Antidepressant-like effects and mechanisms of flavonoids and related analogues. Eur J Med Chem. 2016;121:47-57. https://doi.org/10.1016/j.ejmech.2016.05.026 PMid:27214511 DOI: https://doi.org/10.1016/j.ejmech.2016.05.026
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894-902. https://doi.org/10.1038/nature07455 PMid:18923511 DOI: https://doi.org/10.1038/nature07455
Sentari M, Harahap U, Sapiie TW, Ritarwan K. Blood cortisol level and blood serotonin level in depression mice with basil leaf essential oil treatment. Open Access Maced J Med Sci. 2019;7(16):2652-5. https://doi.org/10.3889/oamjms.2019.819 PMid:31777626 DOI: https://doi.org/10.3889/oamjms.2019.819
Brown ES, Varghese FP, McEwen BS. Association of depression with medical illness: Does cortisol play a role? Biol Psychiatry. 2004;55:1-9. https://doi.org/10.1016/s0006-3223(03)00473-6 PMid:14706419 DOI: https://doi.org/10.1016/S0006-3223(03)00473-6
Can ÖD, Özkay ÜD, Üçel UI. Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms. Eur J Pharmacol. 2013;699(1- 3):250-7. https://doi.org/10.1016/j.ejphar.2012.10.017 PMid:23099258 DOI: https://doi.org/10.1016/j.ejphar.2012.10.017
Yi LT, Xu HL, Feng J, Zhan X, Zhou LP, Cui CC. Involvement of monoaminergic systems in the antidepressant-like effect of nobiletin. Physiol Behav. 2011;102(1):1-6. https://doi.org/10.1016/j.physbeh.2010.10.008 PMid:20951716 DOI: https://doi.org/10.1016/j.physbeh.2010.10.008
Cassani J, Dorantes-Barrón AM, Novales LM, Real GA, Estrada-Reyes R. Anti-depressant-like effect of kaempferitrin isolated from Justicia spicigera schltdl (Acanthaceae) in two behavior models in mice: Evidence for the involvement of the serotonergic system. Molecules. 2014;19(12):21442-61. https://doi.org/10.3390/molecules191221442 PMid:25532842 DOI: https://doi.org/10.3390/molecules191221442
Zhen L, Zhu J, Zhao X, Huang W, An Y, Li S, et al. The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system. Behav Brain Res. 2012;228(2):359-66. https://doi.org/10.1016/j.bbr.2011.12.017 PMid:22197297 DOI: https://doi.org/10.1016/j.bbr.2011.12.017
Kalantaridou SN, Zoumakis E, Makrigiannakis A, Lavasidis LG, Vrekoussis T, Chrousos GP. Corticotropin-releasing hormone, stres and human reproduction: An update. J Reprod Immunol. 2010;85:33-4. https://doi.org/10.1016/j.jri.2010.02.005 PMid:20412987 DOI: https://doi.org/10.1016/j.jri.2010.02.005
Downloads
Published
How to Cite
License
Copyright (c) 2022 Marianne Marianne, Poppy Anjelisa Hasibuan, Talha bin Emran, Sartika Ramadhayani, Rosnani Nasution, Reza Akbar Bastian (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0