A Review of CRISPR Cas9 for Alzheimer’s Disease: Treatment Strategies and Could target APOE e4, APP, and PSEN-1 Gene using CRISPR cas9 Prevent the Patient from Alzheimer’s Disease?
DOI:
https://doi.org/10.3889/oamjms.2022.9053Keywords:
Alzheimer’s disease, CRISPR-Cas9, Genome editing, APOE e4, APP, PSEN-1, Aducanumab, Amyloid-beta, Tau, Cholinergic neuron damage, Oxidative stress, Inflammation, Peripheral nerve injury, ER stress, Mitochondria anomaliesAbstract
A Review of CRISPR Cas9 for Alzheimer’s Disease: Treatment Strategies and Could target APOE e4, APP, and PSEN-1 Gene using CRISPR cas9 Prevent the Patient from Alzheimer’s Disease?
BACKGROUND: Alzheimer’s disease is a neurodegenerative disorder characterized by the formation of β-amyloid plaques and neurofibrillary tangles from hyperphosphorylated tau. Several studies suggest that targeting the deletion of the APOE e4, PSEN-1, and APP will reduce tau phosphorylation and Aβ protein accumulation, a crucial hypothesis for the causation of Alzheimer’s disease. APOE e4, PSEN-1, and APP with genome editing Clustered Regular interspersed Short Palindromic Repeats-CRISPR-related (CRISPR/Cas9) are thought to have therapeutic promise for Alzheimer’s disease.AIM: The purpose of this study was to determine whether targeting APOE e4, PSEN-1, and APP using CRISPR/Cas9 is an effective therapeutic and whether it has a long-term effect on Alzheimer’s disease.METHODS: The method used in this study summarized articles by examining the titles and abstracts of specific specified keywords. In this situation, the author picked the title and abstract that matched PubMed, Google Scholar, Science Direct, Cochrane, and the Frontiers in Neuroscience; this was followed by checking to see whether the paper was available in full-text. Eventually, the researcher will study the entire article to decide if it is valuable and relevant to the issue.RESULTS: CRISPR/Cas9 deletion of APOE e4, PSEN-1, and APP in induced pluripotent stem cells (iPSC’s) and g2576 mice as APP mutant models reduce tau phosphorylation and Aβ protein accumulation from neurofibrillary tangles and prevent cell death, vascular damage, and dementia. Furthermore, CRISPR/Cas9 deletion in APOE e4, PSEN-1, and APP improved neuronal cell resilience to oxidative stress and inflammation.CONCLUSION: APOE e4, PSEN-1, and APP deletion by genome editing CRISPR/Cas9 is effective to reduce tau phosphorylation and Aβ protein accumulation from neurofibrillary tangles, cell death, vascular damage, and dementia. However, further research is needed to determine the side effects and safety of its use.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf G, Jha SK, et al. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J Adv Res. 2021 ;39:62. https://doi.org/10.1016/j.jare.2021.07.001 DOI: https://doi.org/10.1016/j.jare.2021.07.001
Duncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther. 2017;8(1):111. https://doi.org/10.1186/s13287-017-0567-5 PMid:28494803 DOI: https://doi.org/10.1186/s13287-017-0567-5
Fratiglioni L, Winblad B, von Strauss E. Prevention of Alzheimer’s disease and dementia. Major findings from the Kungsholmen project. Physiol Behav. 2007;92(1-2):98-104. https://doi.org/10.1016/j.physbeh.2007.05.059 PMid:17588621 DOI: https://doi.org/10.1016/j.physbeh.2007.05.059
Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Seminar Alzheimer’s disease. Lancet. 2021;397(10284):1577-90. https://doi.org/10.1016/S0140-6736(20)32205-4 DOI: https://doi.org/10.1016/S0140-6736(20)32205-4
Silva MV, de Mello Gomide Loures C, Alves LC, de Souza LC, Borges KB, das Graças Carvalho M. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci. 2019;26(1):33. https://doi.org/10.1186/s12929-019-0524-y PMid:31072403 DOI: https://doi.org/10.1186/s12929-019-0524-y
Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: A Delphi consensus study. Lancet. 2005;366(9503):2112-7. https://doi.org/10.1016/S0140-6736(05)67889-0 PMid:16360788 DOI: https://doi.org/10.1016/S0140-6736(05)67889-0
Zhang Y, Xu Y, Nie H, Lei T, Wu Y, Zhang L, et al. Prevalence of dementia and major dementia subtypes in the Chinese populations: A meta-analysis of dementia prevalence surveys, 1980-2010. J Clin Neurosci. 2012;19(10):1333-7. https://doi.org/10.1016/j.jocn.2012.01.029 PMid:22682650 DOI: https://doi.org/10.1016/j.jocn.2012.01.029
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11(2):111-28. https://doi.org/10.31887/DCNS.2009.11.2/cqiu PMid:19585947 DOI: https://doi.org/10.31887/DCNS.2009.11.2/cqiu
Corrada MM, Brookmeyer R. Prevalence of dementia after age 90 results from The 90+ study. Neurology. 2008;71(5):337-44. https://doi.org/10.1212/01.wnl.0000310773.65918.cd PMid:18596243 DOI: https://doi.org/10.1212/01.wnl.0000310773.65918.cd
Von Strauss E, Viitanen M, De Ronchi D, Winblad B, Fratiglioni L. Aging and the occurrence of dementia: Findings from a population-based cohort with a large sample of nonagenarians. Arch Neurol. 1999;56(6):587-92. https://doi.org/10.1001/archneur.56.5.587 PMid:10328254 DOI: https://doi.org/10.1001/archneur.56.5.587
Arfina A. Tentang deteksi dini alzheimer di kelurahan. Health Care. 2021;10(2):256-61. DOI: https://doi.org/10.36763/healthcare.v10i2.170
Cummings J, Aisen PS, DuBois B, Frölich L, Jack CR Jr., Jones RW, et al. Drug development in Alzheimer’s disease: The path to 2025. Alzheimers Res Ther. 2016;8(1):1-12. https://doi.org/10.1186/s13195-016-0207-9 PMid:27646601 DOI: https://doi.org/10.1186/s13195-016-0207-9
Olry A, Chastagner P, Israël A, Brou C. Generation and characterization of mutant cell lines defective in γ-secretase processing of notch and amyloid precursor protein. J Biol Chem. 2005;280(31):28564-71. https://doi.org/10.1074/jbc.M502199200 PMid:15958385 DOI: https://doi.org/10.1074/jbc.M502199200
Sastre M, Steiner H, Fuchs K, Capell A, Multhaup G, Condron MM, et al. Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2001;2(9):835-41. https://doi.org/10.1093/embo-reports/kve180 PMid:11520861 DOI: https://doi.org/10.1093/embo-reports/kve180
Tarassishin L, Yin YI, Bassit B, Li YM. Processing of Notch and amyloid precursor protein by γ-secretase is spatially distinct. Proc Natl Acad Sci U S A. 2004;101(49):17050-5. https://doi.org/10.1073/pnas.0408007101 PMid:15563588 DOI: https://doi.org/10.1073/pnas.0408007101
Vassar R, Citron M. Abeta-generating enzymes: Recent advances in beta- and gamma-secretase research. Neuron. 2000;27(3):419-22. https://doi.org/10.1016/s0896-6273(00)00051-9 PMid:11055423 DOI: https://doi.org/10.1016/S0896-6273(00)00051-9
2022 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2022;18:700–789. https://doi.org/10.1002/ALZ.12638 DOI: https://doi.org/10.1002/alz.12638
Lamotte G, Shah RC, Lazarov O, Corcos DM. Exercise training for persons with Alzheimer’s disease and caregivers: A review of dyadic exercise interventions. 2017;49(4):365-77. https://doi.org/10.1080/00222895.2016.1241739 PMid:27870597 DOI: https://doi.org/10.1080/00222895.2016.1241739
Esang M, Gupta M. Aducanumab as a novel treatment for Alzheimer’s disease: A decade of hope, controversies, and the future. Cureus. 2021;13(80):10-3. https://doi.org/10.7759/cureus.17591 PMid:34646644 DOI: https://doi.org/10.7759/cureus.17591
Scheltens P. Aducanumab: Appropriate use recommendations. J Prev Alzheimers Dis. 2021;4(8):412-3. https://doi.org/10.14283/jpad.2021.41 PMid:34585212 DOI: https://doi.org/10.14283/jpad.2021.41
Berumen LC, Padilla K, Mendiola-Precoma J, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s disease. Biomed Res Int. 2016;2016:2589276. https://doi.org/10.1155/2016/2589276 PMid:27547756 DOI: https://doi.org/10.1155/2016/2589276
Se E, Fauzi A, Quan Y, Chamyuang S, Yoke A, Chia Y. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 2021;276:119129. https://doi.org/10.1016/j.lfs.2021.119129 PMid:33515559 DOI: https://doi.org/10.1016/j.lfs.2021.119129
Baraja A, Sunarto FR, Adji AS, Handajani F, Rahman FS. Deletion of the RNLS gene using CRISPR/Cas9 as pancreatic cell β protection against autoimmune and ER stress for Type 1 diabetes mellitus. Open Access Maced J Med Sci. 2021;9(F):613-9. https://doi.org/10.3889/oamjms.2021.7658 DOI: https://doi.org/10.3889/oamjms.2021.7658
Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:1-9. https://doi.org/10.12688/f1000research.14506.1 PMid:30135715 DOI: https://doi.org/10.12688/f1000research.14506.1
König T, Stögmann E. Genetics of Alzheimer’s disease. Wien Med Wochenschr. 2021;171(11-12):249-56. https://doi.org/10.1007/s10354-021-00819-9 PMid:33616797 DOI: https://doi.org/10.1007/s10354-021-00819-9
Thakur AK, Kamboj P, Goswami K, Ahuja K. Pathophysiology and management of Alzheimer’s disease: An overview. J Anal Pharm Res. 2018;7(2):226-35. https://doi.org/10.15406/japlr.2018.07.00230 DOI: https://doi.org/10.15406/japlr.2018.07.00230
Tiwari S, Venkata A, Kaushik A, Adriana Y, Nair M. Alzheimer’s disease diagnostics and therapeutics market. Int J Nanomed. 2019;14:5541-54. https://doi.org/10.2147/IJN.S200490 PMid:31410002
Neugroschl J, Wang S. Alzheimer’s disease: Diagnosis and treatment across the spectrum of disease severity. Mount Sinai J Med. 2011;78(4):596-612. https://doi.org/10.1002/msj.20279 PMid:21748748 DOI: https://doi.org/10.1002/msj.20279
Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, et al. Alzheimer’s disease. Sci Transl Med. 2017;8(338):338ra66. https://doi.org/10.1126/scitranslmed.aaf2362.Tau PMid:27169802 DOI: https://doi.org/10.1126/scitranslmed.aaf2362
Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid Alzheimer’s disease. Science. 1992;256(5054):184-5. https://doi.org/10.1126/science.1566067 PMid:1566067 DOI: https://doi.org/10.1126/science.1566067
Zhang B, Gaiteri C, Bodea L, Wang Z, McElwee J, Podtelezhnikov AA et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. NIH Public Access. 2014;153(3):707-20. https://doi.org/10.1016/j.cell.2013.03.030.Integrated DOI: https://doi.org/10.1016/j.cell.2013.03.030
Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 Variants in Alzheimer’s Disease. NIH Public Access. 2013;368(2):117-27. https://doi.org/10.1056/NEJMoa1211851.TREM2 DOI: https://doi.org/10.1056/NEJMoa1211851
Song W, Hooli B, Mullin K, Jin SC, Cella M, Ulland TK, Wang Y, et al. Alzheimer’s disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. HHS Public Access. 2018;13(4):381-7. https://doi.org/10.1016/j.jalz.2016.07.004.Alzheimer DOI: https://doi.org/10.1016/j.jalz.2016.07.004
Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. HHS Public Access. 2017;36:128-34. https://doi.org/10.1016/j.conb.2015.12.004.New DOI: https://doi.org/10.1016/j.conb.2015.12.004
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. 2011;333(6048):1456-8. https://doi.org/10.1126/science.1202529 PMid:21778362 DOI: https://doi.org/10.1126/science.1202529
Mcgeer PL, Mcgeer EG. Targeting microglia for the treatment of Alzheimer’s disease. Expert Opin Ther Targets. 2014;19(4):1-10. https://doi.org/10.1517/14728222.2014.988707 PMid:25435348 DOI: https://doi.org/10.1517/14728222.2014.988707
Hirbec HE, Noristani HN, Perrin FE. Microglia responses in acute and chronic neurological diseases: What microgliaspecific transcriptomic studies taught (and did Not Teach) us. Front Aging Neurosci. 2017;9:227. https://doi.org/10.3389/fnagi.2017.00227 PMid:28785215 DOI: https://doi.org/10.3389/fnagi.2017.00227
Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23(9):1018-27. https://doi.org/10.1038/nm.4397 PMid:28886007 DOI: https://doi.org/10.1038/nm.4397
Anderson P, Bower JM. Choline @ Modulation of Cortical Associative Emmy Function. Vol. 67; 2019.
Sarter M, Bruno JP. Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Res Brain Res Rev. 1997;23(1-2):28-46. https://doi.org/10.1016/s0165-0173(96)00009-4 PMid:9063585 DOI: https://doi.org/10.1016/S0165-0173(96)00009-4
Van Es JH, E van Gijn M, Riccio O, van den Born M, Vooijs M, Begthel H, et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435(7044):959-63. https://doi.org/10.1038/nature03659 PMid:15959515 DOI: https://doi.org/10.1038/nature03659
Haam J, Yakel JL. Cholinergic modulation of the hippocampal region and memory function. HHS Public Access. 2018;142(Suppl 2):111-21. https://doi.org/10.1111/jnc.14052. Cholinergic DOI: https://doi.org/10.1111/jnc.14052
Gershon S, Brinkman SD. Measurement of cholinergic drug effects on memory in Alzheimer’s disease. Neurobiol Aging. 1983;4(2):139-45. https://doi.org/10.1016/0197-4580(83)90038-6 PMid:6355883 DOI: https://doi.org/10.1016/0197-4580(83)90038-6
Summers WK, Viesselman JO, Marsh GM, Candelora K. Use of THA in treatment of Alzheimer-like dementia: Pilot study in twelve patients. Biol Psychiatry. 1981;16(2):145-53. PMid:7225483
Sultana R, Butterfield DA. Redox proteomics studies of in vivo amyloid beta-peptide animal models of Alzheimer’s disease: Insight into the role of oxidative stress. 2008;2(5):685-96. https://doi.org/10.1002/prca.200780024 PMid:21136866 DOI: https://doi.org/10.1002/prca.200780024
Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid β -peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis. 2007;43:658-77. https://doi.org/10.1016/j.freeradbiomed.2007.05.037 PMid:29562527 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.05.037
Persson T, Popescu BO, Cedazo-Minguez A. Oxidative stress in Alzheimer’s disease: Why did antioxidant therapy fail? Oxid Med Cell Longev. 2014;2014:427318. https://doi.org/10.1155/2014/427318 PMid:24669288 DOI: https://doi.org/10.1155/2014/427318
Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harbor Perspect Med. 2012;2(10):294-6. https://doi.org/10.1101/cshperspect.a006296 PMid:23028126 DOI: https://doi.org/10.1101/cshperspect.a006296
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomed. 2019;14:5541-54. https://doi.org/10.2147/IJN.S200490 PMid:31410002 DOI: https://doi.org/10.2147/IJN.S200490
Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr Neurophar. 2020;18(11):1106-25. https://doi.org/10.2174/1570159X18666200528142429 PMid:32484110 DOI: https://doi.org/10.2174/1570159X18666200528142429
Goldman JS, Hahn SE, Catania JW, LaRusse-Eckert S, Butson MB, Rumbaugh M, et al. Genetic counseling and testing for Alzheimer disease: Joint practice guidelines of the American college of medical genetics and the national society of genetic counselors. Genet Med. 2011;13(6):597-605. https://doi.org/10.1097/GIM.0b013e31821d69b8 PMid:21577118 DOI: https://doi.org/10.1097/GIM.0b013e31821d69b8
Goldman JS, van Deerlin VM. Alzheimer’s disease and frontotemporal dementia: The current state of genetics and genetic testing since the advent of next-generation sequencing. Mol Diagn Ther. 2018;22(5):505. https://doi.org/10.1007/S40291-018-0347-7 PMid:29971646 DOI: https://doi.org/10.1007/s40291-018-0347-7
Kim JH. Genetics of Alzheimer’s disease. Dement Neurocogn Disord. 2018;17(4):131. https://doi.org/10.12779/dnd.2018.17.4.131 PMid:30906402 DOI: https://doi.org/10.12779/dnd.2018.17.4.131
Bertram L, Tanzi RE. Genomic mechanisms in Alzheimer’s disease. Brain Pathol. 2020;30(5):966-77. https://doi.org/10.1111/bpa.12882 PMid:32657454 DOI: https://doi.org/10.1111/bpa.12882
Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20(1):68. https://doi.org/10.1016/S1474-4422(20)30412-9 PMid:33340485 DOI: https://doi.org/10.1016/S1474-4422(20)30412-9
Farrer LA, Cupples A, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: A meta-analysis. JAMA. 1997;278(16):1349-56. https://doi.org/10.1001/JAMA.1997.03550160069041 PMid:9343467 DOI: https://doi.org/10.1001/jama.278.16.1349
György B, Lööv C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, et al. CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol Ther Nucleic Acids. 2018;11:429-40. https://doi.org/10.1016/j.omtn.2018.03.007 PMid:29858078 DOI: https://doi.org/10.1016/j.omtn.2018.03.007
Nagata K, Takahashi M, Matsuba Y, Okuyama-Uchimura F, Sato K, Hashimoto S, et al. Generation of App knock-in mice reveals deletion mutations protective against Alzheimer’s disease-like pathology. Nat Commun. 2018;9(1):1800. https://doi.org/10.1038/s41467-018-04238-0 PMid:29728560 DOI: https://doi.org/10.1038/s41467-018-04238-0
Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22(4):524-8. https://doi.org/10.1038/s41593-019-0352-0 PMid:30858603 DOI: https://doi.org/10.1038/s41593-019-0352-0
Wong E, Liao GP, Chang JC, Xu P, Li YM, Greengard P. GSAP modulates γ-secretase specificity by inducing conformational change in PS1. Proc Natl Acad Sci U S A. 2019;116(13):6385-90. https://doi.org/10.1073/pnas.1820160116 PMid:30850537 DOI: https://doi.org/10.1073/pnas.1820160116
Wadhwani AR, Affaneh A, Van Gulden S, Kessler JA. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in Alzheimer disease. Ann Neurol. 2019;85(5):726-39. https://doi.org/10.1002/ana.25455 PMid:30840313 DOI: https://doi.org/10.1002/ana.25455
Bhattacherjee A, Rodrigues E, Jung J, Luzentales-Simpson M, Enterina JR, Galleguillos D, et al. Repression of phagocytosis by human CD33 is not conserved with mouse CD33. Commun Biol. 2019;2(1):450. https://doi.org/10.1038/s42003-019-0698-6 PMid:31815204 DOI: https://doi.org/10.1038/s42003-019-0698-6
Raikwar SP, Thangavel R, Dubova I, Selvakumar GP, Ahmed ME, Kempuraj D, et al. Targeted gene editing of glia maturation factor in microglia: A novel Alzheimer’s disease therapeutic target. Mol Neurobiol. 2019;56(1):378-93. https://doi.org/10.1007/s12035-018-1068-y PMid:29704201 DOI: https://doi.org/10.1007/s12035-018-1068-y
Fang S, Du Y, Ghosh A, Reed MN, Long Y, Suppiramaniam V, et al. CRISPR/Cas9-mediated CysLT1R deletion reverses synaptic failure, amyloidosis and cognitive impairment in APP/PS1 mice. Aging (Albany NY). 2021;13(5):6634-1. https://doi.org/10.18632/aging.202501 PMid:33591941 DOI: https://doi.org/10.18632/aging.202501
Moreno CL, Guardia LD, Shnyder V, Ortiz-Virumbrales M, Kruglikov I, Zhang B, et al. IPSC-derived familial Alzheimer’s PSEN2 N141I cholinergic neurons exhibit mutation-dependent molecular pathology corrected by insulin signaling. Mol Neurodegener. 2018;13(1):33. https://doi.org/10.1186/s13024-018-0265-5 PMid:29945658 DOI: https://doi.org/10.1186/s13024-018-0265-5
Tan DC, Yao S, Ittner A, Bertz J, Ke YD, Ittner LM, et al. Generation of a new tau knockout (tau Δex1) line using CRISPR/Cas9 genome editing in mice. J Alzheimers Dis. 2018;62(2):571-8. https://doi.org/10.3233/JAD-171058 PMid:29480201 DOI: https://doi.org/10.3233/JAD-171058
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533(7601):125-9. https://doi.org/10.1038/nature17664 PMid:27120160 DOI: https://doi.org/10.1038/nature17664
Sun J, Carlson-Stevermer J, Das U, Shen M, Delenclos M, Snead AM, et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat Commun. 2019;10(1):53. https://doi.org/10.1038/s41467-018-07971-8 PMid:30604771 DOI: https://doi.org/10.1038/s41467-018-07971-8
Ortiz-Virumbrales M, Moreno CL, Kruglikov I, Marazuela P, Sproul A, Jacob S, et al. CRISPR/Cas9-correctable mutationrelated molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2N141I neurons. Acta Neuropathol Commun. 2017;5(1):77. https://doi.org/10.1186/s40478-017-0475-z PMid:29078805 DOI: https://doi.org/10.1186/s40478-017-0475-z
Fang B, Jia L, Jia J. Chinese presenilin-1 V97L mutation enhanced Aβ42 levels in SH-SY5Y neuroblastoma cells. Neurosci Lett. 2006;406(1-2):33-7. https://doi.org/10.1016/j.neulet.2006.06.072 PMid:16916581 DOI: https://doi.org/10.1016/j.neulet.2006.06.072
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature. 2016;533:420-4. https://doi.org/10.1038/nature17946 PMid:27096365 DOI: https://doi.org/10.1038/nature17946
Xu TH, Yan Y, Kang Y, Jiang Y, Melcher K, Xu HE. Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio. Cell Discove. 2016;2:16026. https://doi.org/10.1038/celldisc.2016.26 PMid:27625790 DOI: https://doi.org/10.1038/celldisc.2016.26
Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71(2):621S-9. https://doi.org/https://doi.org/10.1093/ajcn/71.2.621s PMid:10681270 DOI: https://doi.org/10.1093/ajcn/71.2.621s
Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol. 1999;1(8):479-85. https://doi.org/10.1038/70265 PMid:10587643 DOI: https://doi.org/10.1038/70265
Yukioka F, Matsuzaki S, Kawamoto K, Koyama Y, Hitomi J, Katayama T, et al. Presenilin-1 mutation activates the signaling pathway of caspase-4 in endoplasmic reticulum stress-induced apoptosis. Neurochem Int. 2008;52(4-5):683-7. https://doi.org/10.1016/j.neuint.2007.08.017 PMid:17942194 DOI: https://doi.org/10.1016/j.neuint.2007.08.017
Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol. 2004;165(3):347-56. https://doi.org/10.1083/jcb.200310015 PMid:15123740 DOI: https://doi.org/10.1083/jcb.200310015
Barbero-Camps E, Fernández A, Baulies A, Martinez L, Fernández-Checa JC, Colell A. Endoplasmic reticulum stress mediates amyloid β neurotoxicity via mitochondrial cholesterol trafficking. Am J Pathol. 2014;184(7):2066-81. https://doi.org/10.1016/j.ajpath.2014.03.014 PMid:24815354 DOI: https://doi.org/10.1016/j.ajpath.2014.03.014
Pereira CM. Crosstalk between endoplasmic reticulum stress and protein misfolding in neurodegenerative diseases. ISRN Cell Biology. 2013;2013:1-22. https://doi.org/10.1155/2013/256404 DOI: https://doi.org/10.1155/2013/256404
Alberdi E, Wyssenbach A, Alberdi M, Sánchez-Gómez MV, Cavaliere F, Rodríguez JJ, et al. Ca2+-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell. 2013;12(2):292-302. https://doi.org/10.1111/acel.12054 PMid:23409977 DOI: https://doi.org/10.1111/acel.12054
Kondo T, Asai M, Tsukita K, Yamanaka S, Ohsawa Y, Egawa N, et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell. 2013;12(4):487-96. https://doi.org/10.1016/j.stem.2013.01.009 PMid:23434393 DOI: https://doi.org/10.1016/j.stem.2013.01.009
Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci USA. 2006;103(15):5644-51. https://doi.org/10.1073/pnas.0600549103 PMid:16567625 DOI: https://doi.org/10.1073/pnas.0600549103
Mahley RW, Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science. 1988;240(4852):622-30. https://doi.org/10.1126/science.3283935 PMid:3283935 DOI: https://doi.org/10.1126/science.3283935
Huang Y, Weisgraber KH, Mucke L, Mahley RW. Apolipoprotein E: Diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer’s disease. J Mol Neurosci. 2004;23(3):189-204. https:/doi.org/10.1385/JMN:23:3:189 PMid:15181247 DOI: https://doi.org/10.1385/JMN:23:3:189
Scheuner D, Kaufman RJ. The unfolded protein response: A pathway that links insulin demand with β-cell failure and diabetes. Endocr Rev. 2008;29(3):317-33. https://doi.org/10.1210/er.2007-0039 PMid:18436705 DOI: https://doi.org/10.1210/er.2007-0039
Masciarelli S, Sitia R. Building and operating an antibody factory: Redox control during B to plasma cell terminal differentiation. Biochim Biophys Acta. 2008;1783(4):578-88. https://doi.org/10.1016/j.bbamcr.2008.01.003 PMid:18241675 DOI: https://doi.org/10.1016/j.bbamcr.2008.01.003
Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Rev. 1998;12(7):982-95. https://doi.org/10.1101/gad.12.7.982 PMid:9531536 DOI: https://doi.org/10.1101/gad.12.7.982
McCullough KD, Martindale JL, Klotzm LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 2001;21(4):1249-59. https://doi.org/10.1128/mcb.21.4.1249-1259.2001 PMid:11158311 DOI: https://doi.org/10.1128/MCB.21.4.1249-1259.2001
Kamata H, Honda SI, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120(5):649-61. https://doi.org/10.1016/j.cell.2004.12.041 PMid:15766528 DOI: https://doi.org/10.1016/j.cell.2004.12.041
Kajimoto Y, Kaneto H. Role of oxidative stress in pancreatic β-cell dysfunction. Ann N Y Acad Sci. 2004;1011:168-76. https://doi.org/10.1196/annals.1293.017 PMid:15126294 DOI: https://doi.org/10.1196/annals.1293.017
Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for the pancreatic islet β cell. Free Radic Biol Med. 2006;41(2):177-84. https://doi.org/10.1016/j.freeradbiomed.2005.04.030 PMid:16814095 DOI: https://doi.org/10.1016/j.freeradbiomed.2005.04.030
Shahzad F, Rehman ME, Basit J, Saeed S, Abbas K, Farhan M. CRISPR/Cas9 gene editing: A new hope for transthyretin amyloidosis treatment. Annals Med Surgery. 2022. DOI: https://doi.org/10.1016/j.amsu.2022.104784
Khan S, Mahmood MS, Rahman SU, Zafar H, Habibullah S, Khan Z, et al. CRISPR/Cas9: The Jedi against the dark empire of diseases. J Biomed Sci. 2018;25(1):29. https://doi.org/10.1186/s12929-018-0425-5 PMid:29592810 DOI: https://doi.org/10.1186/s12929-018-0425-5
Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest developed strategies to minimize the off-target effects in CRISPR-casmediated genome editing. Cells. 2020;9(7):1608. https://doi.org/10.3390/cells9071608 PMid:32630835 DOI: https://doi.org/10.3390/cells9071608
Huang YW, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell. 2017;168(3):427-41.e21. https://doi.org/10.1016/j.cell.2016.12.044 PMid:28111074 DOI: https://doi.org/10.1016/j.cell.2016.12.044
Najm R, Jones EA, Huang Y. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer’s disease. Molecular neurodegeneration. 2019;14:1-3. DOI: https://doi.org/10.1186/s13024-019-0324-6
Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, et al. APOE4 Causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell Types. Neuron. 2018;98(6):1141-54.e7. https://doi.org/10.1016/j.neuron.2018.05.008 PMid:29861287 DOI: https://doi.org/10.1016/j.neuron.2018.05.008
Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer‘s disease and age-related cognitive decline. Nature. 2012;488(7409):96-9. https://doi.org/10.1038/nature11283 PMid:22801501 DOI: https://doi.org/10.1038/nature11283
Guyon A, Rousseau J, Bégin FG, Bertin T, Lamothe G, Tremblay JP. Base editing strategy for insertion of the A673T mutation in the APP gene to prevent the development of AD in vitro. Mol Ther Nucleic Acids. 2021;24:253-63. https://doi.org/10.1016/j.omtn.2021.02.032 PMid:33815938 DOI: https://doi.org/10.1016/j.omtn.2021.02.032
Zhang Y, Schmid B, Nielsen TT, Nielsen JE, Clausen C, Hyttel P, Holst B, Freude KK. Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a sitespecific homozygous mutation in CHMP2B. Stem cell research. 2016;17:151-3. DOI: https://doi.org/10.1016/j.scr.2016.06.005
Sun L, Zhou R, Yang G, Shi Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci U S A. 2017;114(4):E476-85. https://doi.org/10.1073/pnas.1618657114 PMid:27930341 DOI: https://doi.org/10.1073/pnas.1618657114
Carroll D, Charo RA. The societal opportunities and challenges of genome editing. Genome Biol. 2015;16(1):242. https://doi.org/10.1186/s13059-015-0812-0 PMid:26537374 DOI: https://doi.org/10.1186/s13059-015-0812-0
Yunta ER. Ethical issues in genome editing using Crispr/Cas9 system. J Clin Res Bioeth. 2016;7(2):266. https://doi.org/10.4172/2155-9627.1000266 DOI: https://doi.org/10.4172/2155-9627.1000266
Ledford H. CRISPR, the disruptor. Nature. 2015;522(7554):20-4. https://doi.org/10.1038/522020a PMid:26040877 DOI: https://doi.org/10.1038/522020a
Milà-Alomà M, Salvadó G, Gispert JD, Vilor-Tejedor N, Grau-Rivera O, Sala-Vila A, et al. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimer’s Dement. 2020;16(10):1358-71. https://doi.org/10.1002/alz.12131 PMid:32573951 DOI: https://doi.org/10.1002/alz.12131
Lu L, Yu X, Cai Y, Sun M, Yang H. Application of CRISPR/Cas9 in Alzheimer’s disease. Front Neurosci. 2021;15:803894. https://doi.org/10.3389/fnins.2021.803894 PMid:34992519 DOI: https://doi.org/10.3389/fnins.2021.803894
Barman A, Deb B, Chakraborty S. A glance at genome editing with CRISPR-Cas9 technology. Curr Genet. 2020;66(3):447-62. https://doi.org/10.1007/s00294-019-01040-3 PMid:31691023 DOI: https://doi.org/10.1007/s00294-019-01040-3
Van Dyck CH. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: Pitfalls and promise. Biol Psychiatry. 2018;83(4):311-9. https://doi.org/10.1016/j.biopsych.2017.08.010 PMid:28967385 DOI: https://doi.org/10.1016/j.biopsych.2017.08.010
Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol. 2015;1311:47-75. https://doi.org/10.1007/978-1-4939-2687-9_4 PMid:25981466 DOI: https://doi.org/10.1007/978-1-4939-2687-9_4
Torres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9 technology: Applications and human disease modelling. Brief Funct Genomics. 2017;16(1):4-12. https://doi.org/10.1093/bfgp/elw025 PMid:27345434 DOI: https://doi.org/10.1093/bfgp/elw025
Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50-6. https://doi.org/10.1038/nature19323 PMid:27582220 DOI: https://doi.org/10.1038/nature19323
Mo JJ, Li JY, Yang Z, Liu Z, Feng JS. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimer’s disease: A systematic review and network meta-analysis. Ann Clin Transl Neurol. 2017;4(12):931-42. https://doi.org/10.1002/acn3.469 DOI: https://doi.org/10.1002/acn3.469
Hryhorowicz M, Lipiński D, Zeyland J, Słomski R. CRISPR/Cas9 immune system as a tool for genome engineering. Arch Immunol Ther Exp. 2017;65(3):233-40. https://doi.org/10.1007/s00005-016-0427-5 PMid:27699445 DOI: https://doi.org/10.1007/s00005-016-0427-5
Uddin MS, Tewari D, Al Mamun A, Kabir MT, Niaz K, Wahed MI, et al. Circadian and sleep dysfunction in Alzheimer’s disease. Ageing Res Rev. 2020;60:101046. https://doi.org/10.1016/j.arr.2020.101046 PMid:32171783 DOI: https://doi.org/10.1016/j.arr.2020.101046
Van Giau V, Lee H, Shim KH, Bagyinszky E, An SS. Genomeediting applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer’s disease. Clin Intervent Aging. 2018;13:221-33. https://doi.org/10.2147/CIA.S155145 PMid:29445268 DOI: https://doi.org/10.2147/CIA.S155145
Guerreiro R, Hardy J. Genetics of Alzheimer’s disease. Neurotherapeutics. 2014;11:732-7. DOI: https://doi.org/10.1007/s13311-014-0295-9
Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, et al. Gene therapy for neurological disorders: Challenges and recent advancements. J Drug Target. 2020;28(2):111-28. https://doi.org/10.1080/1061186X.2019.1630415 PMid:31195838 DOI: https://doi.org/10.1080/1061186X.2019.1630415
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Arga Setyo Adji, Jordan Steven Widjaja, Vira Aulia Kusuma Wardani, Alvian Habib Muhammad, Fitri Handajani, Hendy Bhaskara Perdana Putra, Firman Suryadi Rahman (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0