Women’s Weight Gain Analysis Using the Neural Network Method in Medan, Indonesia

Authors

  • Dame Evalina Simangunsong Department of Nursing, Poltekkes Kementerian Kesehatan, Medan, Indonesia https://orcid.org/0000-0001-7208-5662
  • Marlisa Marlisa Department of Nursing, Poltekkes Kementerian Kesehatan, Medan, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9085

Keywords:

Obesity, Prevention, Women, Neural network method

Abstract

BACKGROUND: Obesity has become a global problem and has even been declared a global epidemic by the WHO. The high percentage of non-infectious diseases in Indonesia is 69.911%. This is experienced by people aged over 18 years. Central obesity is experienced by 26.6% of Indonesia's population (44.3 million people). Non-infectious diseases are the biggest cause of death and disability in Indonesia, 80% of non-infectious diseases are caused by an unhealthy lifestyle. The impact caused by this case can affect various aspects in the health, economic, socio-cultural, and psychological fields of the sufferer. Therefore, it is very important to prevent and control it. Many health promotion efforts have been carried out to overcome them, from conventional to modern health promotion activities that are considered not optimal to overcome them. The use and utilization of technology is one of the best solutions for solving public service problems. At least its utilization can overcome various geographical, time, and socio-economic problems.

AIM: Assessment is required to determine the primary cause of weight gain.

METHODOLOGY: This type of research is a survey with an explanatory type, to analyze the causal relationship between research variables and body mass index. It was conducted in the city of Medan in 21 (twenty-one) districts. Through sampling with two-stage cluster sampling, as many as 210 women aged 35–50 years were included in the research sample.

RESULTS: The results of the Random Forest Algorithm calculation test and the Neural Network method with MLP (Multilayer Perceptron) showed that the history of being overweight, contraceptive use, and diet were the dominant factors influencing Body Mass Index.

CONCLUSION: The history of weight gain with age is the dominant factor influencing changes in body mass index.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Rachmi CN, Li M, Alison Baurac L. Overweight and obesity in Indonesia: Prevalence and risk factors – A literature review. Public Health. 2017;147:20-9. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0033350617300434?via%3Dihub. [Last accessed on 2021 Aug 20]. DOI: https://doi.org/10.1016/j.puhe.2017.02.002

Badan Pusat Statistik. Keadaan Ketenagakerjaan di Indonesia 2018. Badan Pusat Statistik; 2018.

Jungheim ES, Travieso JL, Carson KR, Moley KH. Obesity and reproductive function. Obs Gynecol Clin North Am. 2012;39(4):479-93. Available from: https://pubmed.ncbi.nlm.nih.gov/23182555/.[Last accessed on 2021 Aug 01]. DOI: https://doi.org/10.1016/j.ogc.2012.09.002

Davis SR, Castelo-Branco C, Chedraui P, Lumsden MA, Nappi RE, Shah D, et al. Understanding Weight Gain at Menopause. Climacteric; 2012. DOI: https://doi.org/10.3109/13697137.2012.707385

Reba B, Saputra F, Asyary H, Hamzens A, Sulistiadi M, Darmawan W, et al. Laporan Validasi Survey Indikator Kesehatan Nasional (SIRKESNAS) Tahun 2016. Jakarta; 2017. Available from: http://repository.uhamka.ac.id/id/eprint/371/. [Last accessed on 2021 Feb 02].

Kemenkes RI. Hidupkan Pos UKK Agar Pekerja Sektor Informal Tersentuh Layanan Kesehatan Kerja. Kementeri Kesehat RI; 2019.

Kemenkes RI. Rencana Strategis Kementerian Kesehatan Tahun 2015-2019, Kepmenkes RI Nomor HK.02.02/ Menkes/52/2015. Kemenkes RI; 2015.

The Lancet. Caesarean section-the first cut isn’t the deepest. Lancet. 2010;375(9719):956. https://doi.org/10.1016/S0140-6736(10)60419-9 DOI: https://doi.org/10.1016/S0140-6736(10)60419-9

Mirjalili AA, Heidari AA, Faris H, Aljarah I, Mirjalili S. An Efficient Hybrid Multilayer Perceptron Neural Network with Grasshopper Optimization. Springer-Verlag GmbH Ger Part Springer Nat; 2018. https://doi.org/10.1007/s00500-018-3424-2 DOI: https://doi.org/10.1007/s00500-018-3424-2

Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al. Body fatness and cancer — Viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8):794-8. https://doi.org/10.1056/NEJMsr1606602. Available from: https://www.nejm.org/doi/full/10.1056/nejmsr1606602. [Last accessed on 2021 Feb 05]. PMid:27557308. DOI: https://doi.org/10.1056/NEJMsr1606602

Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012;61(6):1315- 22. https://doi.org/10.2337/db11-1300.Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357299/. [Last accessed on 2021 Jan 30]. PMid:22618766. DOI: https://doi.org/10.2337/db11-1300

Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015-2016. NCHS Data Brief. 2017;288:1-8. Available from: https://pubmed.ncbi.nlm.nih.gov/29155689/. [Last accessed on 2021 Jan 18].

Hartanto H. Buku Keluarga Berencana dan Kontrasepsi. 7th ed. Yogyakarta: Pustaka Sinar Harapan; 2020.

Sari EP. Perbedaan indeks massa tubuh (IMT) akseptor kontrasepsi hormonal dan non hormonal pada wanita usia subur. Adi Husada Nurs J. 2017;3(2):34-9.

Widya Kusumawati LK. Hubungan penggunaan KB suntik DMPA terhadap indeks massa tubuh (IMT). J Midwifery. 2021;9(1):46- 51. Available from: http://ejournal.poltekkes-denpasar.ac.id/index.php/JIK/article/view/1478/0. [Last accessed on 2021 Sep 28].

Wiknjosastro H. Ilmu Kandungan. Malang: Yayasan Bina Pustaka Sarwo Prawirohardjo; 2006. Available from: http://202.4.186.74//index.php?p=show_detail&id=356. [Last accessed on 2021 Jan 19].

Guyton AC, Hall JE. Buku Ajar Fisiologi Kedokteran (Terjemahan). 11th ed. Jakarta: Buku Kedokteran EGC; 2007.

Pratiwi D, Syahredi Syahredi EE. Hubungan antara penggunaan kontrasepsi hormonal suntik DMPA dengan peningkatan berat badan di puskesmas lapai kota padang. Jurnal Kesehatan Andalas. 2014;3(3):365-9. https://doi.org/10.25077/jka.v3i3.130 DOI: https://doi.org/10.25077/jka.v3i3.130

Kemenkes RI. Hipertensi. Infodatin Pus dan Inf Kementeri Kesehat RI; 2014.

Harpaz M, Wolff R. Menopause Reset!: Reverse Weight Gain, Speed Fat Loss, and Get Your Body Back in 3 Simple Steps Kindle Edition. Rodale Books. Available from: https://www.amazon.com/Menopause-Reset-Reverse-Weight-Simple-ebook/dp/B004I43HJ0. [Last accessed on 2018 May 10].

Downloads

Published

2022-04-16

How to Cite

1.
Simangunsong DE, Marlisa M. Women’s Weight Gain Analysis Using the Neural Network Method in Medan, Indonesia. Open Access Maced J Med Sci [Internet]. 2022 Apr. 16 [cited 2024 Nov. 21];10(E):698-703. Available from: https://oamjms.eu/index.php/mjms/article/view/9085

Issue

Section

Public Health Epidemiology

Categories