Moringa oleifera Prevents In vivo Carbon Tetrachloride-Induced Liver Fibrosis through Targeting Hepatic Stellate Cells
DOI:
https://doi.org/10.3889/oamjms.2022.9119Keywords:
Activation hepatic stellate cells, Apoptosis, Extrinsic pathway, Liver fibrosis, Moringa oleiferaAbstract
BACKGROUND: Moringa oleifera (MO) exhibits hepatoprotective properties and provides an anti-liver fibrosis effect. However, its mechanism related to the anti-liver fibrosis effect was still unclear.
AIM: The objective of this study was to explain the mechanism of liver fibrosis prevention by MO through hepatic stellate cells (HSCs).
MATERIALS AND METHODS: The liver fibrosis model was induced by the intraperitoneal injection of 10% CCl4 twice a week at a one cc/kg BW dose for 12 weeks and followed by a quantity of 2 cc/kg BW for the past 2 weeks. Ethanol extract of MO leaves (150, 300, and 600 mg/kg) was orally administered daily. Double immunofluorescence staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis were applied to analyze the markers involved in HSCs activation and a-HSC apoptosis.
RESULTS: The results showed that the administration of MO could reduce transforming growth factor-β and nuclear factor-kappa B (NFκB), increase the expression of tumor necrosis factor-related apoptosis-inducing ligand-receptor 2 and caspase-3, and increase the number of apoptosis a-HSCs.
CONCLUSION: This study showed that the ethanol extract of MO leaves could inhibit liver fibrosis by inhibiting HSCs activation and inducing of a-HSCs apoptosis through the extrinsic pathway.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Dhar D, Baglieri J, Kisseleva T, Brenner DA. Mechanisms of liver fibrosis and its role in liver cancer. Exp Biol Med. 2020;245(2):96-108. https://doi.org/10.1177/1535370219898141 PMid:31924111 DOI: https://doi.org/10.1177/1535370219898141
Zisser A, Ipsen DH, Tveden-Nyborg P. Hepatic stellate cell activation and inactivation in NASH-fibrosis roles as putative treatment targets? Biomedicines. 2021;9(4):365. https://doi.org/10.3390/biomedicines9040365 PMid:33807461 DOI: https://doi.org/10.3390/biomedicines9040365
Jung YK, Yim HJ. Reversal of liver cirrhosis: Current evidence and expectations. Korean J Internal Med. 2017;32(2):213-28. https://doi.org/10.3904/kjim.2016.268 PMid:28171717 DOI: https://doi.org/10.3904/kjim.2016.268
Trivedi P, Wang S, Friedman SL. The power of plasticity metabolic regulation of hepatic stellate cells. Cell Metab. 2021;33(2):242-57. https://doi.org/10.1016/j.cmet.2020.10.026 PMid:33232666 DOI: https://doi.org/10.1016/j.cmet.2020.10.026
Dewidar B, Meyer C, Dooley S. TGF-β in hepatic stellate cell activation and liver fibrogenesis updated 2019. Cells. 2019;8(11):1419. https://doi.org/10.3390/cells8111419 PMid:31718044 DOI: https://doi.org/10.3390/cells8111419
Zhang T, Hao H, Zhou ZQ, Zeng T, Zhang JM, Zhou XY. Lipoxin A4 inhibited the activation of hepatic stellate cells-T6 cells by modulating profibrotic cytokines and NF-κB signaling pathway. Prostaglandins Other Lipid Mediat. 2020;146:106380. https://doi.org/10.1016/j.prostaglandins.2019.106380 PMid:31698141 DOI: https://doi.org/10.1016/j.prostaglandins.2019.106380
Zhang J, Jiang N, Ping J, Xu L. TGFβ1induced autophagy activates hepatic stellate cells via the ERK and JNK signaling pathways. Int J Mol Med. 2021;47(1):256-66. https://doi.org/10.3892/ijmm.2020.4778 PMid:33236148 DOI: https://doi.org/10.3892/ijmm.2020.4778
Liu RM, Pravia KG. Oxidative stress and glutathione in TGF-β- mediated fibrogenesis. Free Radic Biol Med. 2010;48(1):1-15. https://doi.org/10.1016/j.freeradbiomed.2009.09.026 PMid:19800967 DOI: https://doi.org/10.1016/j.freeradbiomed.2009.09.026
Paik YH, Kim J, Aoyama T, De Minicis S, Bataller R, Brenner DA. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal. 2014;20(17):2854-72. https://doi.org/10.1089/ars.2013.5619 PMid:24040957 DOI: https://doi.org/10.1089/ars.2013.5619
Arriazu E, de Galarreta MR, Cubero FJ, Varela-Rey M, de Obanos MP, Leung TM, et al. Extracellular matrix and liver disease. Antioxid Redox Signal. 2014;21(7):1078-97. https://doi.org/10.1089/ars.2013.5697 PMid:24219114 DOI: https://doi.org/10.1089/ars.2013.5697
Arabpour M, Cool RH, Faber KN, Quax WJ, Haisma HJ. Receptor-specific TRAIL as a means to achieve targeted elimination of activated hepatic stellate cells. J Drug Target. 2017;25(4):360-9. https://doi.org/10.1080/1061186x.2016.1262867 PMid:27885847 DOI: https://doi.org/10.1080/1061186X.2016.1262867
Aly O, Abouelfadl DM, Shaker OG, Hegazy GA, Fayez AM, Zaki HH. Hepatoprotective effect of Moringa oleifera extract on TNF-α and TGF-β expression in acetaminophen-induced liver fibrosis in rats, Egypt J Med Hum Genet. 2020;21:69. https://doi.org/10.1186/s43042-020-00106-z DOI: https://doi.org/10.1186/s43042-020-00106-z
Emara RT, Taha NM, Mandour AE, Lebda MA, Rashed MA, Menshawy MM. Biochemical and histopathological effects of colchicine and Moringa oleifera on thioacetamide-induced liver fibrosis in rats. Egypt Acad J Biol Sci B Zool. 2021;13:265-78. https://doi.org/10.21608/eajbsz.2021.180913 DOI: https://doi.org/10.21608/eajbsz.2021.180913
Emarha RT, Taha NM, Mandour AE, Lebda MA, Rashed MA. Biochemical and molecular effects of colchicine and Moringa olifera on thioacetamide induced liver fibrosis in rats. Alexandria J Vet Sci. 2021;69:7-15. https://doi.org/10.5455/ajvs.1886 DOI: https://doi.org/10.5455/ajvs.1886
Darweish M, GabAllh M, El-Mashad AB, Moustafa S, Amin A. Ameliorative effect of moringa and rosemary ethanolic extracts on thioacetamide-induced liver fibrosis in rats. Kafrelsheikh Vet Med J. 2021;19:34-40. https://doi.org/10.21608/ kvmj.2021.85579.1021 DOI: https://doi.org/10.21608/kvmj.2021.85579.1021
Akter T, Rahman MA, Moni A, Apu M, Islam A, Fariha A, et al. Prospects for protective potential of Moringa oleifera against kidney diseases. Plants. 2021;10:2818. https://doi.org/10.3390/plants10122818 DOI: https://doi.org/10.3390/plants10122818
Hamza AA. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem Toxicol. 2010;48(1):345-55. https://doi.org/10.1016/j.fct.2009.10.022 PMid:19854235 DOI: https://doi.org/10.1016/j.fct.2009.10.022
Supriono S, Kalim H, Permatasari N. Liver regenerative and hepatoprotective effects of Moringa oleifera extract in the liver fibrosis animal model. J Glob Pharm Technol. 2020;12:10.
Supriono S, Kalim H, Permatasari N, Susianti H. Moringa oleifera inhibits liver fibrosis progression by inhibition of α-smooth muscle actin, tissue inhibitors of metalloproteinases-1, and collagen-1 in rat model liver fibrosis. Open Access Maced J Med Sci. 2020;8:287-92. https://doi.org/10.3889/oamjms.2020.4254 DOI: https://doi.org/10.3889/oamjms.2020.4254
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116-41. https://doi.org/10.1016/j.freeradbiomed.2020.02.025 PMid:32156524 DOI: https://doi.org/10.1016/j.freeradbiomed.2020.02.025
Li Y, Ding H, Liu L, Song Y, Du X, Feng S, et al. Corrigendum: Non-esterified fatty acid induce dairy cow hepatocytes apoptosis via the mitochondria-mediated ROS-JNK/ERK signaling pathway. Front Cell Dev Biol. 2020;8:462. https://doi.org/10.3389/fcell.2020.00462 DOI: https://doi.org/10.3389/fcell.2020.00462
Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015;6:565-77. https://doi.org/10.1016/j.redox.2015.09.009 PMid:26496488 DOI: https://doi.org/10.1016/j.redox.2015.09.009
Fabregat I, Caballero-Díaz D. Transforming growth factor-β- induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Front Oncol. 2018;8:357. https://doi.org/10.3389/fonc.2018.00357 DOI: https://doi.org/10.3389/fonc.2018.00357
Choi ME, Ding Y, Kim SI. TGF-β signaling via TAK1 pathway: Role in kidney fibrosis. Semin Nephrol 2012;32(3):244-52. https://doi.org/10.1016/j.semnephrol.2012.04.003 PMid:22835455 DOI: https://doi.org/10.1016/j.semnephrol.2012.04.003
Wu L, Zhang Q, Mo W, Feng J, Li S, Li J, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci Rep. 2017;7(1):1-13. https://doi.org/10.1038/s41598-017-09673-5 DOI: https://doi.org/10.1038/s41598-017-09673-5
Jiang W, Wu DB, Fu SY, Chen EQ, Tang H, Zhou TY. Insight into the role of TRAIL in liver diseases. Biomed Pharmacother. 2019;110:641-5. https://doi.org/10.1016/j.biopha.2018.12.004 PMid:30544063 DOI: https://doi.org/10.1016/j.biopha.2018.12.004
Shi J, Zhao J, Zhang X, Cheng Y, Hu J, Li Y, et al. Activated hepatic stellate cells impair NK cell anti-fibrosis capacity through a TGF-β-dependent emperipolesis in HBV cirrhotic patients. Sci Rep. 2017;7:44544. https://doi.org/10.1038/srep44544 PMid:28291251 DOI: https://doi.org/10.1038/srep44544
Luedde T, Schwabe RF. NF-κB in the liver linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8(2):108-18. https://doi.org/10.1038/nrgastro.2010.213 DOI: https://doi.org/10.1038/nrgastro.2010.213
Supriono S, Pratomo B, Praja DI.Effect of curcumin on nf-κb levels and the degree of liver fibrosis in liver fibrosis rats. J Penyakit Dalam Indonesia. 2018;5:174-83. https://doi.org/10.7454/jpdi.v5i4.271 DOI: https://doi.org/10.7454/jpdi.v5i4.271
Negara K, Suwiyoga K, Pemayun T, Sudewi AA, Astawa N, Arijana IG, et al. The role of caspase-3, apoptosis-inducing factor, and B-cell lymphoma-2 expressions in term premature rupture of membrane. Rev Bras Ginecol Obstet. 2018;40:733-9. https://doi.org/10.1055/s-0038-1675611 DOI: https://doi.org/10.1055/s-0038-1675611
Singh HD, Otano I, Rombouts K, Singh KP, Peppa D, Gill US, et al. TRAIL regulatory receptors constrain human hepatic stellate cell apoptosis. Sci Rep. 2017;7:1-11. https://doi.org/10.1038/s41598-017-05845-5 DOI: https://doi.org/10.1038/s41598-017-05845-5
Yang J, Liu Q, Cao S, Xu T, Li X, Zhou D, et al. MicroRNA-145 increases the apoptosis of activated hepatic stellate cells induced by TRAIL through NF-κB signaling pathway. Front Pharmacol. 2018;8:980. https://doi.org/10.3389/fphar.2017.00980 DOI: https://doi.org/10.3389/fphar.2017.00980
Abd Rani NZ, Husain K, Kumolosasi E. Moringa genus: A review of phytochemistry and pharmacology. Front Pharmacol. 2018;9:108. https://doi.org/10.3389/fphar.2018.00108 PMid:29503616 DOI: https://doi.org/10.3389/fphar.2018.00108
Tian C, Liu X, Chang Y, Wang R, Lv T, Cui C, et al. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S Afr J Bot. 2021;137:257-64. https://doi.org/10.1016/j.sajb.2020.10.022 DOI: https://doi.org/10.1016/j.sajb.2020.10.022
Olazarán-Santibañez F, Rivera G, Vanoye-Eligio V, Mora-Olivo A, Aguirre-Guzmán G, Ramírez-Cabrera M, Arredondo- Espinoza E. Antioxidant and antiproliferative activity of the ethanolic extract of equisetum myriochaetum and molecular docking of its main metabolites (Apigenin, Kaempferol, and Quercetin) on β-Tubulin. Molecules. 2021;26:443. https://doi.org/10.3390/molecules26020443 DOI: https://doi.org/10.3390/molecules26020443
Dabeek WM, Marra MV. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients. 2019;11(10):2288. https://doi.org/10.3390/nu11102288 PMid:31557798 DOI: https://doi.org/10.3390/nu11102288
Sezer ED, Oktay LM, Karadadaş E, Memmedov H, Gunel NS, Sözmen E. Assessing anticancer potential of blueberry flavonoids, quercetin, kaempferol, and gentisic acid, through oxidative stress and apoptosis parameters on HCT-116 cells. J Med Food. 2019;22:1118-26. https://doi.org/10.1089/jmf.2019.0098 PMid:31241392 DOI: https://doi.org/10.1089/jmf.2019.0098
Khazdair MR, Anaeigoudari A, Agbor GA. Anti-viral and anti-inflammatory effects of kaempferol and quercetin and COVID-2019: A scoping review. Asian Pac J Trop Biomed. 2021;11:327. https://doi.org/10.4103/2221-1691.319567 DOI: https://doi.org/10.4103/2221-1691.319567
Kubina R, Iriti M, Kabała-Dzik A. Anticancer potential of selected flavonols: Fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients. 2021;13:845. https://doi.org/10.3390/nu13030845 PMid:33807530 DOI: https://doi.org/10.3390/nu13030845
Chu CC, Chen SY, Chyau CC, Wu YC, Chu HL, Duh PD. Anticancer activity and mediation of apoptosis in hepatoma carcinoma cells induced by djulis and its bioactive compounds. J Funct Foods. 2020;75:104225. https://doi.org/10.1016/j.jff.2020.104225 DOI: https://doi.org/10.1016/j.jff.2020.104225
Wu L, Lu I, Chung CF, Wu HY, Liu YT. Antiproliferative mechanisms of quercetin in rat activated hepatic stellate cells. Food Funct. 2011;2:204-12. https://doi.org/10.1039/c0fo00158a DOI: https://doi.org/10.1039/c0fo00158a
Kay CD, Hooper L, Kroon PA, Rimm EB, Cassidy A. Relative impact of flavonoid composition, dose and structure on vascular function: A systematic review of randomised controlled trials of flavonoid‐rich food products. Mol Nutr Food Res. 2012;56(11):1605-16. https://doi.org/10.1002/mnfr.201200363 PMid:22996837 DOI: https://doi.org/10.1002/mnfr.201200363
León-González AJ, Auger C, Schini-Kerth VB. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol. 2015;98(3):371-80. https://doi.org/10.1016/j.bcp.2015.07.017 PMid:26206193 DOI: https://doi.org/10.1016/j.bcp.2015.07.017
Downloads
Published
How to Cite
License
Copyright (c) 2022 Supriono Supriono, Handono Kalim, Nur Permatasari, Hani Susianti (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0