Role of COX-2 for Successful Embryo Implantation Process: A Mini-review
DOI:
https://doi.org/10.3889/oamjms.2023.9123Keywords:
cyclooxygenase-2, decidualization, implantation, embryo developmentAbstract
The endometrium undergoes a dynamic proliferation of cells and vascular tissue under the influence of ovarian steroid hormones. Implantation is an essential process in the development of pregnancy, where there is close contact between embryo and uterus, including supposition, adhesion, and invasion. The changes occur in the human endometrium, including endometrial secretion changes, blood vessels, and immune response, leading to the uterine receptivity period. Cyclooxygenase (COX) is an enzyme that plays a role in the metabolic conversion of arachidonic acid to prostaglandins (PG). It is known that Cyclooxygenase-2 (COX-2) plays a key role in the endometrium. COX-2 is essential for blastocyst implantation and decidualization. The deficiency of COX-2, but not COX-1, results in multiple female reproductive failures (including implantation defects). We reviewed the literature on COX-2 and embryonal implantation in the endometrium and its potential mechanisms that lead to physiological implantation. This review aims to identify the essential roles of COX-2 in the successful implantation process, especially in decidualization, implantation, and embryo growth. The regulation of COX-2 expression in endometrial cells is controlled by ovarian steroid hormones (progesterone and estrogen) through the ENaC pathway to regulate the phosphorylation CREB transcription factor. The presentation of COX-2 varies throughout the stage of embryo development.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Critchley HO, Maybin JA, Armstrong GM, Williams AR. Physiology of the endometrium and regulation of menstruation. Physiol Rev. 2020;100(3):1149-79. https://doi.org/10.1152/physrev.00031.2019 PMid:32031903 DOI: https://doi.org/10.1152/physrev.00031.2019
Fox C, Morin S, Jeong JW, Scott RT Jr., Lessey BA. Local and systemic factors and implantation: What is the evidence? Fertil Steril. 2016;105(4):873-84. https://doi.org/10.1016/j.fertnstert.2016.02.018 PMid:26945096 DOI: https://doi.org/10.1016/j.fertnstert.2016.02.018
Makieva S, Giacomini E, Ottolina J, Sanchez AM, Papaleo E, Viganò P. Inside the endometrial cell signaling subway: Mind the gap(s). Int J Mol Sci. 2018;19(9):2477. https://doi.org/10.3390/ijms19092477 PMid:30134622 DOI: https://doi.org/10.3390/ijms19092477
Chen X, Man GC, Liu Y, Wu F, Huang J, Li TC, et al. Physiological and pathological angiogenesis in endometrium at the time of embryo implantation. Am J Reprod Immunol. 2017;78(2):1-7. https://doi.org/10.1111/aji.12693 PMid:28466568 DOI: https://doi.org/10.1111/aji.12693
Dekel N, Gnainsky Y, Granot I, Racicot K, Mor G. The role of inflammation for a successful implantation. Am J Reprod Immunol. 2014;72(2):141-7. https://doi.org/10.1111/aji.12266 PMid:24809430 DOI: https://doi.org/10.1111/aji.12266
Huang F, Cao J, Liu Q, Zou Y, Li H, Yin T. MAPK/ERK signal pathway involved expression of COX-2 and VEGF by IL-1β induced in human endometriosis stromal cells in vitro. Int J Clin Exp Pathol. 2013;6(10):2129-36. PMid:24133591
Rezavand N, Khazaei M, Oliapanah E, Nikzad H, Khazaei MR. Low doses of celecoxib stimulate human endometrium growth in a three-dimensional culture model. Int J Fertil Steril. 2013;7(1):7-12. PMid:24520457
Tegeder I. COX-1 and COX-2 in pain. In: Gebhart GF, Schmidt RF, editors. Encyclopedia of Pain. Berlin, Heidelberg: Springer; 2013. p. 791-4. DOI: https://doi.org/10.1007/978-3-642-28753-4_915
Lim H, Gupta RA, Ma WG, Paria BC, Moller DE, Morrow JD, et al. Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta. Genes Dev. 1999;13(12):1561-74. https://doi.org/10.1101/gad.13.12.1561 PMid:10385625 DOI: https://doi.org/10.1101/gad.13.12.1561
St-Louis I, Singh M, Brasseur K, Leblanc V, Parent S, Asselin E. Expression of COX-1 and COX-2 in the endometrium of cyclic, pregnant and in a model of pseudopregnant rats and their regulation by sex steroids. Reprod Biol Endocrinol. 2010;8(1):103. https://doi.org/10.1186/1477-7827-8-103 PMid:20735829 DOI: https://doi.org/10.1186/1477-7827-8-103
Salleh N. Diverse roles of prostaglandins in blastocyst implantation. ScientificWorldJournal. 2014;2014:968141. https://doi.org/10.1155/2014/968141 PMid:24616654 DOI: https://doi.org/10.1155/2014/968141
Jacobsen BM, Horwitz KB. Progesterone receptors, their isoforms and progesterone regulated transcription. Mol Cell Endocrinol. 2012;357(1-2):18-29. https://doi.org/10.1016/j.mce.2011.09.016 PMid:21952082 DOI: https://doi.org/10.1016/j.mce.2011.09.016
Zhang XH, Liang X, Wang TS, Liang XH, Zuo RJ, Deng WB, et al. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) induction on snail expression during mouse decidualization. Mol Cell Endocrinol. 2013;381(1-2):272-9. https://doi.org/10.1016/j.mce.2013.08.011 PMid:23994020 DOI: https://doi.org/10.1016/j.mce.2013.08.011
Ma XH, Hu SJ, Yu H, Xu LB, Yang ZM. Differential expression of transcriptional repressor snail gene at implantation site in mouse uterus. Mole Reprod Dev. 2006;73(2):133-41. https://doi.org/10.1002/mrd.20429 PMid:16261611 DOI: https://doi.org/10.1002/mrd.20429
Song H, Lim H, Das SK, Paria BC, Dey SK. Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF- deficient mice. Mole Endocrinol. 2000;14(8):1147-61. https://doi.org/10.1210/mend.14.8.0498 PMid:10935540 DOI: https://doi.org/10.1210/mend.14.8.0498
Ruan YC, Chen H, Chan HC. Ion channels in the endometrium: Regulation of endometrial receptivity and embryo implantation. Hum Reprod Update. 2014;20(4):517-29. https://doi.org/10.1093/humupd/dmu006 PMid:24591147 DOI: https://doi.org/10.1093/humupd/dmu006
Bylander A, Lind K, Goksör M, Billig H, Larsson DG. The classical progesterone receptor mediates the rapid reduction of fallopian tube ciliary beat frequency by progesterone. Reprod Biol Endocrinol. 2013;11:33. https://doi.org/10.1186/1477-7827-11-33 PMid:23651709 DOI: https://doi.org/10.1186/1477-7827-11-33
Yamaji K, Yoshitomi T, Ishikawa H, Usui S. Prostaglandins E1, and E2, but not F2alpha or latanoprost, inhibit monkey ciliary muscle contraction. Curr Eye Res. 2005;30(8):661-5. https://doi.org/10.1080/02713680590968222 PMid:16109646 DOI: https://doi.org/10.1080/02713680590968222
Jones RL, Wan Ahmad WA, Woodward DF, Wang J. Nature of the slow relaxation of smooth muscle induced by a EP2 receptor agonist with a non-prostanoid structure. Prostaglandins Leukot Essent Fatty Acids. 2013;88(4):321-30. https://doi.org/10.1016/j.plefa.2013.01.007 PMid:23419768 DOI: https://doi.org/10.1016/j.plefa.2013.01.007
Huang JC, Arbab F, Tumbusch KJ, Goldsby JS, Matijevic- Aleksic N, Wu KK. Human fallopian tubes express prostacyclin (PGI) synthase and cyclooxygenases and synthesize abundant PGI. J Clin Endocrinol Metab. 2002;87(9):4361-8. https://doi.org/10.1210/jc.2002-020199 PMid:12213900 DOI: https://doi.org/10.1210/jc.2002-020199
Arbab F, Goldsby J, Matijevic-Aleksic N, Huang G, Ruan KH, Huang JC. Prostacyclin is an autocrine regulator in the contraction of oviductal smooth muscle. Hum Reprod. 2002;17(12):3053-9. https://doi.org/10.1093/humrep/17.12.3053 PMid:12456602 DOI: https://doi.org/10.1093/humrep/17.12.3053
Niakan KK, Han J, Pedersen RA, Simon C, Pera RA. Human pre-implantation embryo development. Development. 2012;139(5):829-41. https://doi.org/10.1242/dev.060426 PMid:22318624 DOI: https://doi.org/10.1242/dev.060426
Kudo I, Murakami M. Prostaglandin E synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol. 2005;38(6):633-8. https://doi.org/10.5483/bmbrep.2005.38.6.633 PMid:16336776 DOI: https://doi.org/10.5483/BMBRep.2005.38.6.633
Wang H, Wen Y, Mooney S, Behr B, Polan ML. Phospholipase A2 and cyclooxygenase gene expression in human preimplantation embryos. J Clin Endocrinol Metab. 2002;87(6):2629-34. https://doi.org/10.1210/jcem.87.6.8532 PMid:12050227 DOI: https://doi.org/10.1210/jcem.87.6.8532
Li SJ, Wang TS, Qin FN, Huang Z, Liang XH, Gao F, et al. Differential regulation of receptivity in two uterine horns of a recipient mouse following asynchronous embryo transfer. Sci Rep. 2015;5:15897. https://doi.org/10.1038/srep15897 PMid:26531680 DOI: https://doi.org/10.1038/srep15897
Xu Y, Knipp GT, Cook TJ. Expression of cyclooxygenase isoforms in developing rat placenta, human term placenta, and BeWo human trophoblast model. Mol Pharm. 2005;2(6):481-90. https://doi.org/10.1021/mp0500519 PMid:16323955 DOI: https://doi.org/10.1021/mp0500519
Premyslova M, Chisaka H, Okamura K, Challis JR. IL-1beta treatment does not co-ordinately up-regulate mPGES-1 and COX-2 mrna expression, but results in higher degree of cellular and intracellular co-localization of their immunoreactive proteins in human placenta trophoblast cells. Placenta. 2006;27(6-7):576-86. https://doi.org/10.1016/j.placenta.2005.07.005 PMid:16183115 DOI: https://doi.org/10.1016/j.placenta.2005.07.005
Waclawik A, Kaczynski P, Jabbour HN. Autocrine and paracrine mechanisms of prostaglandin E2 action on trophoblast/conceptus cells through the prostaglandin E2 receptor (PTGER2) during implantation. Endocrinology. 2013;154(10):3864-76. https://doi.org/10.1210/en.2012-2271 PMid:23861370 DOI: https://doi.org/10.1210/en.2012-2271
Li DD, Yang ZQ, Guo CH, Yue L, Duan CC, Cao H, et al. Hmgn1 acts downstream of C/EBPβ to regulate the decidualization of uterine stromal cells in mice. Cell Cycle. 2015;14(21):3461-74. https://doi.org/10.1080/15384101.2015.1093704 PMid:26566865A DOI: https://doi.org/10.1080/15384101.2015.1093704
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Ratna Dewi Puspita, Dicky Moch Rizal, Rul Afiyah Syarif, Ika Puspita Sari (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0