Recognition of Pathogens and Their Inflammatory Signaling Events
DOI:
https://doi.org/10.3889/oamjms.2022.9184Keywords:
Pathogens, Innate immune system, Signaling, PRPs, Pathogen signal recognition, TLRsAbstract
The innate immune system is the main and first line of defense mechanism present in the human body, which acts against a foreign antigen. To function it utilize several mechanisms, among those are the primary one is recognizing the foreign antigen which is accomplished via decidedly complicated group of molecules termed as pattern recognition receptors (PRRs), which perceive various diverse structures present on the pathogen known as pathogen-associated molecular patterns (PAMPs). PRPs include several classes of receptors’, functions, and nature of these receptors vary from each other depending upon the molecular composition of PAMPs they detect. However, the Toll-like receptors (TLRs) are among the class of PRPs, which are studied widely. In this review, we have presented the contemporary understanding of pathogens recognition by various receptor classes including PRRs. In addition, we also discuss PRPs associated signaling pathways associated with antimicrobial immune response triggering.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Litman GW, Cannon JP, Dishaw LJ. Reconstructing immune phylogeny: New perspectives. Nat Rev Immunol. 2005;5(11):866-79. https://doi.org/10.1038/nri1712 PMid:16261174 DOI: https://doi.org/10.1038/nri1712
Sompayrac LM. How the Immune System Works. 6thed. Hoboken, NJ: Wiley-Blackwell; 2019.
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240-73. https://doi.org/10.1128/CMR.00046-08 PMid:19366914 DOI: https://doi.org/10.1128/CMR.00046-08
Reche PA. The tertiary structure of γc cytokines dictates receptor sharing. Cytokine. 2019;116:161-8. https://doi.org/10.1016/j.cyto.2019.01.007 PMid:30716660 DOI: https://doi.org/10.1016/j.cyto.2019.01.007
Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987-95. https://doi.org/10.1038/ni1112 PMid:15454922 DOI: https://doi.org/10.1038/ni1112
Walsh D, McCarthy J, O’Driscoll C, Melgar S. Pattern recognition receptors--molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine Growth Factor Rev. 2013;24(2):91-104. https://doi.org/10.1016/j.cytogfr.2012.09.003 PMid:23102645 DOI: https://doi.org/10.1016/j.cytogfr.2012.09.003
Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821-32. https://doi.org/10.1016/j.cell.2010.01.040 PMid:20303873 DOI: https://doi.org/10.1016/j.cell.2010.01.040
Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991-1045. https://doi.org/10.1146/annurev.iy.12.040194.005015 PMid:8011301 DOI: https://doi.org/10.1146/annurev.iy.12.040194.005015
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4(3):a006049. https://doi.org/10.1101/cshperspect.a006049 PMid:22296764 DOI: https://doi.org/10.1101/cshperspect.a006049
Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011:30(1):16-34. https://doi.org/10.3109/08830185.2010.529976 PMid:21235323 DOI: https://doi.org/10.3109/08830185.2010.529976
Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. Immunobiology. 5th ed. New York: Garland Science; 2001.
Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. The complement system and innate immunity. In: Immunobiology: The Immune System in Health and Disease. New York: Garland Science; 2001.
Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 6th ed. Amsterdam: Elsevier; 2010. p. 272-88.
Murphy K, Weaver C. Innate immunity: The first lines of defense. In: Janeway’s Immunobiology. 9th ed. New York: Garland Science; 2017. p. 49.
Bortoluci KR, Medzhitov R. Control of infection by pyroptosis and autophagy: Role of TLR and NLR. Cell Mol Life Sci. 2010;67(10):1643-51. https://doi.org/10.1007/s00018-010-0335-5 PMid:20229126 DOI: https://doi.org/10.1007/s00018-010-0335-5
Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Ann Rev Immunol. 2006;24:353-89. https://doi.org/10.1146/annurev.immunol.24.021605.090552 PMid:16551253 DOI: https://doi.org/10.1146/annurev.immunol.24.021605.090552
Takeda K, Kaisho T, Akira S. Toll-like receptors. Ann Rev Immunol. 2003;21:335-76. https://doi.org/10.1146/annurev.immunol.21.120601.141126 PMid:12524386 DOI: https://doi.org/10.1146/annurev.immunol.21.120601.141126
Botos I, Segal DM, Davies DR. The structural biology of toll-like receptors. Structure. 2011;19(4):447-59. https://doi.org/10.1016/j.str.2011.02.004 PMid:21481769 DOI: https://doi.org/10.1016/j.str.2011.02.004
Waltenbaugh C, Doan T, Melvold R, Viselli S. Immunology: Lippincott’s Illustrated Reviews. Philadelphia: Wolters Kluwer Health/Lippincott Williams and Wilkins; 2008. p. 17.
Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: Signaling, host defense, and inflammatory disease. Immunity. 2014;41(6):898-908. https://doi.org/10.1016/j.immuni.2014.12.010 PMid:25526305 DOI: https://doi.org/10.1016/j.immuni.2014.12.010
Pattabhi S, Wilkins CR, Dong R, Knoll ML, Posakony J, Kaiser S, et al. Targeting innate immunity for antiviral therapy through small molecule agonists of the RLR pathway. J Virol. 2015;90(5):2372-87. https://doi.org/10.1128/jvi.02202-15 PMid:26676770 DOI: https://doi.org/10.1128/JVI.02202-15
Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors. Immunity. 2011;34(5):680-92. https://doi.org/10.1016/j.immuni.2011.05.003 PMid:21616437 DOI: https://doi.org/10.1016/j.immuni.2011.05.003
Lin SC, Lo YC, Wu H. Helical assembly in the MyD88- IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465(7300):885-90. https://doi.org/10.1038/nature09121 PMid:20485341 DOI: https://doi.org/10.1038/nature09121
Mogensen TH, Paludan SR. Reading the viral signature by toll-like receptors and other pattern recognition receptors. J Mol Med (Berl). 2005;83(3):180-92. https://doi.org/10.1007/s00109-004-0620-6 PMid:15635478 DOI: https://doi.org/10.1007/s00109-004-0620-6
Kawasaki T, Kawai T. Discrimination between self and non-self-nucleic acids by the innate immune system. Int Rev Cell Mole Biol. 2019;341:1-30. https://doi.org/10.1016/bs.ircmb.2018.08.004 PMid:30798985 DOI: https://doi.org/10.1016/bs.ircmb.2018.08.004
Agnieszka B, Herbert S, Jakob A, Vollmer W, Götz F. Why are pathogenic Staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol. 2005;55(3):778-87. https://doi.org/10.1111/j.1365-2958.2004.04446.x PMid:15661003 DOI: https://doi.org/10.1111/j.1365-2958.2004.04446.x
Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999;274(25):17406-9. https://doi.org/10.1074/jbc.274.25.17406 PMid:10364168 DOI: https://doi.org/10.1074/jbc.274.25.17406
Novikova OD, Solovyeva TF. Nonspecific porins of the outer membrane of gram-negative bacteria: Structure and functions. Biol Membrany. 2009;3(1):3-15. https://doi.org/10.1134/ S1990747809010024. DOI: https://doi.org/10.1134/S1990747809010024
Miao EA, Andersen-Nissen E, Warren SE, Aderem A. TLR5 and Ipaf: Dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol. 2007;29(3):275-88. https://doi.org/10.1007/s00281-007-0078-z PMid:17690885 DOI: https://doi.org/10.1007/s00281-007-0078-z
Bayry J, Beaussart A, Dufrêne YF, Sharma M, Bansal K, Kniemeyer O, et al. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular response. Infect Immun. 2014;82(8):3141-53. https://doi.org/10.1128/IAI.01726-14 PMid:24818666 DOI: https://doi.org/10.1128/IAI.01726-14
Roeder A, Kirschning CJ, Rupec RA, Schaller M, Korting HC. Toll-like receptors and innate antifungal responses. Trends Microbiol. 2004;12(1):44-9. https://doi.org/10.1016/j.tim.2003.11.003 PMid:14700551 DOI: https://doi.org/10.1016/j.tim.2003.11.003
Netea MG, Der Graaf CA, Vonk AG, Verschueren I, Der Meer JW, Kullberg BJ. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis. 2002;185(10):1483-9. https://doi.org/10.1086/340511 PMid:11992285 DOI: https://doi.org/10.1086/340511
Westman J, Walpole GF, Kasper L, Xue BY, Elshafee O, Hube B, et al. Lysosome fusion maintains phagosome integrity during fungal infection. Cell Host Microbe. 2020;28(6):798-812. e6. https://doi.org/10.1016/j.chom.2020.09.004 PMid:33022213 DOI: https://doi.org/10.1016/j.chom.2020.09.004
Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, et al. The toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 1999;401(6755):811-5. https://doi.org/10.1038/44605 PMid:10548109 DOI: https://doi.org/10.1038/44605
Goodridge HS, Simmons RM, Underhill DM. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol. 2007;178(5):3107-15. https://doi.org/10.4049/jimmunol.178.5.3107 PMid:17312158 DOI: https://doi.org/10.4049/jimmunol.178.5.3107
Almeida IC, Gazzinelli RT. Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi: Structural and functional analyses. J Leukoc Biol. 2001;70(4):467-77. PMid:11590183
Debierre-Grockiego F, Azzouz N, Schmidt J, Dubremetz JF, Geyer H, Geyer R, et al. Roles of glycosylphosphatidylinositols of Toxoplasma gondii. Induction of tumor necrosis factor-alpha production in macrophages. J Biol Chem. 2003;278(35):32987-93. https://doi.org/10.1074/jbc.M304791200 PMid:12815041 DOI: https://doi.org/10.1074/jbc.M304791200
Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005;201(1):19-25. https://doi.org/10.1084/jem.20041836 PMid:15630134 DOI: https://doi.org/10.1084/jem.20041836
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801. https://doi.org/10.1016/j.cell.2006.02.015 PMid:16497588 DOI: https://doi.org/10.1016/j.cell.2006.02.015
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Ruqaih Alghsham, Zafar Rasheed, Ali Shariq, Abdullah S. Alkhamiss, Fahad A. Alhumaydhi, Abdullah S. M. Aljohani, Sami A. Althwab, Ahmad Alshomar, Homaidan T. Alhomaidan, Essam M. Hamad, Thamir Alsaeed, Rana Alghamdi, Waleed Al Abdulmonem (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0