Islamic Fasting Models but not Only Ramadan Improved Metabolic Parameter in High-Fat-High-Fructose-Induced Rats
DOI:
https://doi.org/10.3889/oamjms.2022.9252Keywords:
Intermittent fasting, Lipid profile, Metabolism, Ramadan fasting, RatsAbstract
BACKGROUND: Various types of Islamic fasting, apart from Ramadan fasting, have not been studied for their effects on health and metabolic processes.
AIM: This study aimed to evaluate the effect of models of Ramadan, Dawood, and Monday-Thursday fasting on metabolic parameters in high-fat-high-fructose (HFHF)-induced rats.
METHODS: Wistar rats were subjected to normal diet control, HFHF diet alone, and modeling Islamic fastings such as Ramadan, Dawood, and Monday-Thursday fasting models, within a period of 29 days at night that HFHF previously induced for 2 weeks. Serum lipid profile, glucose, uric acid, aspartate transaminase (AST) and alanine transaminase (ALT) for liver function, and urea and creatinine for kidney function were assessed after HFHF induction (pre-test) and after fasting treatment (post-test).
RESULTS: HFHF administration for 2 weeks caused dyslipidemia and increased urea levels significantly. However, other parameters were impaired but not statistically significant. Islamic fasting models demonstrated a significantly improved lipid profile. However, glucose, uric acid, AST, ALT, urea, and creatinine improved after fasting treatment but were not statistically significant.
CONCLUSION: Islamic fasting models have a beneficial effect on improving metabolic parameters. Both Dawood and Monday-Thursday fastings can be considered to promote health and improve metabolic processes as well as Ramadan fasting.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert W. A high-fat, high-fructose diet induces antioxidant imbalance and increases the risk and progression of nonalcoholic fatty liver disease in mice. Scientifica (Cairo). 2016;2016:5029414. https://doi.org/10.1155/2016/5029414 PMid:27019761 DOI: https://doi.org/10.1155/2016/5029414
Crescenzo R, Bianco F, Coppola P, Mazzoli A, Tussellino M, Carotenuto R, etal. Fructose supplementation worsens the deleterious effects of short-term high-fat feeding on hepatic steatosis and lipid metabolism in adult rats. Exp Physiol. 2014;99(9):1203-13. https://doi.org/10.1113/expphysiol.2014.079632 PMid:24972835 DOI: https://doi.org/10.1113/expphysiol.2014.079632
Pappachan JM, Babu S, Krishnan B, Ravindran NC. Non-alcoholic fatty liver disease: A clinical update. J Clin Transl Hepatol. 2017;5(4):384-93. https://doi.org/10.14218/JCTH.2017.00013 PMid:29226105 DOI: https://doi.org/10.14218/JCTH.2017.00013
Thongnak L, Chatsudthipong V, Kongkaew A, Lungkaphin A. Effects of dapagliflozin and statins attenuate renal injury and liver steatosis in high-fat/high-fructose diet-induced insulin-resistant rats. Toxicol Appl Pharmacol. 2020;396:114997. https://doi.org/10.1016/j.taap.2020.114997 PMid:32259528 DOI: https://doi.org/10.1016/j.taap.2020.114997
Ma J, Cheng Y, Su Q, Ai W, Gong L, Wang Y, et al. Effects of intermittent fasting on liver physiology and metabolism in mice. Exp Ther Med. 2021;22(3):950. https://doi.org/10.3892/etm.2021.10382 PMid:34335892 DOI: https://doi.org/10.3892/etm.2021.10382
Muslim IA-H, Sahih Muslim, Book 6: Book of Fasting (Kitab Al-Sawm). Riyadh: Maktaba Dar-us-Salam; 2007.
Cho Y, Hong N, Kim K, Cho S, Lee M, Lee Y, et al. The effectiveness of intermittent fasting to reduce body mass index and glucose metabolism: A systematic review and meta-analysis. J Clin Med. 2019;8(10):1645. https://doi.org/10.3390/jcm8101645 PMid:31601019 DOI: https://doi.org/10.3390/jcm8101645
Trepanowski JF, Bloomer RJ. The impact of religious fasting on human health. Nutr J. 2010;9:57. https://doi.org/10.1186/1475-2891-9-57 PMid:21092212 DOI: https://doi.org/10.1186/1475-2891-9-57
Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46-58. https://doi.org/10.1016/j.arr.2016.10.005 PMid:27810402 DOI: https://doi.org/10.1016/j.arr.2016.10.005
Rahbar AR, Safavi E, Rooholamini M, Jaafari F, Darvishi S, Rahbar A. Effects of intermittent fasting during ramadan on insulin-like growth factor-1, interleukin 2, and lipid profile in healthy muslims. Int J Prev Med. 2019;10:7. https://doi.org/10.4103/ijpvm.IJPVM_252_17 PMid:30774841 DOI: https://doi.org/10.4103/ijpvm.IJPVM_252_17
Nurmasitoh T, Utami SY, Kusumawardani E, Najmuddin AA, Fidianingsih I. Intermittent fasting decreases oxidative stress parameters in Wistar rats (Rattus norvegicus). Univ Med. 2018;37(1):31-8. https://doi.org/10.18051/UnivMed.2018.v37.31-38 DOI: https://doi.org/10.18051/UnivMed.2018.v37.31-38
Mulyaningrum U, Muttaqina AF, Idninda AN, Pulungan N, Agustiningtyas I, Fidianingsih I. Effect of dawood fasting on the increased level of antioxidant enzymes. Open Access Maced J Med Sci. 2021;9(A):1-6. https://doi.org/10.3889/oamjms.2021.4175 DOI: https://doi.org/10.3889/oamjms.2021.4175
Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24(5):101-5. https://doi.org/10.21315/mjms2017.24.5.11 PMid:29386977 DOI: https://doi.org/10.21315/mjms2017.24.5.11
Softic S, Gupta MK, Wang GX, Fujisaka S, O’Neill BT, Rao TN, et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest. 2017;127(11):4059-74. https://doi.org/10.1172/JCI94585 PMid:28972537 DOI: https://doi.org/10.1172/JCI94585
Adam SK, Soelaiman IN, Umar NA, Mokhtar N, Mohamed N, Jaarin K. Effects of repeatedly heated palm oil on serum lipid profile, lipid peroxidation and homocysteine levels in a post-menopausal rat model. Mcgill J Med. 2008;11(2):145-51 PMid:19148313 DOI: https://doi.org/10.26443/mjm.v11i2.566
Go RE, Hwang KA, Kim YS, Kim SH, Nam KH, Choi KC. Effects of palm and sunflower oils on serum cholesterol and fatty liver in rats. J Med Food. 2015;18(3):363-9. https://doi.org/10.1089/ jmf.2014.3163 PMid:25393932 DOI: https://doi.org/10.1089/jmf.2014.3163
Dai KS, Tai DY, Ho P, Chen CC, Peng WC, Chen ST, et al. Accuracy of the easytouch blood glucose self-monitoring system: A study of 516 cases. Clin Chim Acta. 2004;349(1-2):135-41. https://doi.org/10.1016/j.cccn.2004.06.010 PMid:15469866 DOI: https://doi.org/10.1016/j.cccn.2004.06.010
Zhuhua Z, Zhiquan W, Zhen Y, Yixin N, Weiwei Z, Xiaoyong L, et al. A novel mice model of metabolic syndrome: The high-fat-high-fructose diet-fed ICR mice. Exp Anim. 2015;64(4):435-42. https://doi.org/10.1538/expanim.14-0086 PMid:26134356 DOI: https://doi.org/10.1538/expanim.14-0086
Lontchi-Yimagou E, Tanya A, Tchankou C, Ngondi J, Oben J. Metabolic effects of quail eggs in diabetes-induced rats: Comparison with chicken eggs. Food Nutr Res. 2016;60:32530. https://doi.org/10.3402/fnr.v60.32530 PMid:27717410 DOI: https://doi.org/10.3402/fnr.v60.32530
Moreno-Fernández S, Garcés-Rimón M, Vera G, Astier J, Landrier JF, Miguel M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients. 2018;10(10):1502. https://doi.org/10.3390/nu10101502 PMid:30322196 DOI: https://doi.org/10.3390/nu10101502
Bucaktepe PG, Akdağ M, Dasdag S, Celepkolu T, Yılmaz MA, Demir V, et al. Catecholamine levels in a Ramadan fasting model in rats: A case control study. Biotechnol Biotechnol Equip. 2016;30:706-12. https://doi.org/10.1080/13102818.20 16.1172510 DOI: https://doi.org/10.1080/13102818.2016.1172510
Nieminen P, Rouvinen-Watt K, Harris L, Huitu O, Henttonen H, Mustonen AM. De novo lipogenesis is suppressed during fasting but upregulated at population decline in cyclic voles. Exp Biol Med. 2016;241(8):882-7. https://doi.org/10.1177/1535370216633312 PMid:26892709 DOI: https://doi.org/10.1177/1535370216633312
Rakvaag E, Lund MD, Wiking L, Hermansen K, Gregersen S. Effects of different fasting durations on glucose and lipid metabolism in sprague dawley rats. Horm Metab Res. 2019;51(8):546-53. https://doi.org/10.1055/a-0897-2496 PMid:31121611 DOI: https://doi.org/10.1055/a-0897-2496
Calvo-Ochoa E, Hernández-Ortega K, Ferrera P, Morimoto S, Arias C. Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. J Cereb Blood Flow Metab. 2014;34(6):1001-8. https://doi.org/10.1038/jcbfm.2014.48 PMid:24667917 DOI: https://doi.org/10.1038/jcbfm.2014.48
Samuel VT. Fructose induced lipogenesis: From sugar to fat to insulin resistance. Trends Endocrinol Metab. 2011;22(2):60-5. https://doi.org/10.1016/j.tem.2010.10.003 PMid:21067942 DOI: https://doi.org/10.1016/j.tem.2010.10.003
Malaisse WJ, Belkacemi L, Selselet-Attou G, Louchami K, Sener A. Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations. Int J Mol Med. 2010;26(5):759-65. https://doi.org/10.3892/ijmm_00000523 PMid:20878099 DOI: https://doi.org/10.3892/ijmm_00000523
Gujjala S, Putakala M, Nukala S, Bangeppagari M, Ramaswamy R, Desireddy S. Renoprotective effect of caralluma fimbriata against high-fat diet-induced oxidative stress in wistar rats. J Food Drug Anal. 2016;24(3):586-93. https://doi.org/10.1016/j.jfda.2016.01.013 PMid:28911565 DOI: https://doi.org/10.1016/j.jfda.2016.01.013
Khan N, Rasheed A, Ahmed H, Aslam F, Kanwal F. Effect of ramadan fasting on glucose level, lipid profile, HbA1c and uric acid among medical students in Karachi, Pakistan. East Mediterr Heal J. 2017;23(4):274-9. https://doi.org/10.26719/2017.23.4.274 PMid:28634977 DOI: https://doi.org/10.26719/2017.23.4.274
Ooi SL, Pak S. Short-term intermittent fasting for weight loss: A case report. Cureus. 2019;11(4):4482. https://doi.org/10.7759/cureus.4482 PMid:31249759 DOI: https://doi.org/10.7759/cureus.4482
Morigny P, Houssier M, Mouisel E, Langin D. Adipocyte lipolysis and insulin resistance. Biochimie. 2016;125:259-66. https://doi.org/10.1016/j.biochi.2015.10.024 PMid:26542285 DOI: https://doi.org/10.1016/j.biochi.2015.10.024
Downloads
Published
How to Cite
License
Copyright (c) 2022 Naufal Arif Ismail, Miranti Dewi Pramaningtyas, Titis Nurmasitoh (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0