Evaluation of IGF-1, TNF-α, and TGF-β Gene Expression after Oral Vitamin D Supplementation in School-Aged Children with Chronic Bronchial Asthma

Authors

  • Abeer Ramadan Department of Molecular Genetics and Enzymology, Human Genetics and Genomic Research Institute, National Research Center, Giza, Egypt https://orcid.org/0000-0001-5757-1769
  • Sara Sallam Department of Child Health, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
  • Rasha Yousef Department of Clinical and Chemical Pathology, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
  • Mai Elsheikh Department of Complementary Medicine, Medical Research and Clinical Studies Institute, National Research Center, Giza, Egypt
  • Asmaa Ali Department of Pulmonary Medicine, Abbassia Chest Hospital, Ministry of Health, Cairo, Egypt
  • Yasmine Elhusseny Department of Biochemistry and Molecular Biology, New Giza University, Giza, Egypt
  • Sally Ishak Department of Pediatric, Faculty of Medicine, Ain Shams University Hospital, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2022.9266

Keywords:

Vitamin D, Bronchial asthma, TNF-α, IGF-1, TGF-β, Gene expression

Abstract

BACKGROUND: Airway remodeling in children with bronchial asthma is due to the effect of inflammatory mediators and growth factors on the bronchial epithelium. Vitamin D (VitD) has immunomodulatory effect in many inflammatory diseases as bronchial asthma. The ant-inflammatory and anti-fibrotic role of VitD could prevent or improve air way remodeling in asthmatic patients.

AIM: The study investigated the effect of VitD supplementation on the expression of transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α), and insulin growth factor 1(IGF-1) and to correlate them with asthma severity and level of control.

METHODS: The serum level of VitD and the mRNA expression of IGF-1, TGF-β, and TNF-α were estimated in 50 patients and 20 healthy controls control subjects using quantitative PCR in real-time. Asthmatic patients with VitD deficiency received VitD supplementation for 2 months followed by remeasurement of serum VitD and the genes expression TGF-β, TNF-α, and IGF-1.

RESULT: Pre-intake of VitD and serum level of VitD were lower in all patients than control subjects (p = 0.005). VitD level was directly correlated with IGF-1 mRNA expression, which was indirectly correlated with TGF-β, r = 0.5 and −0.57; p = 0.0001 and 0.002, respectively. After VitD supplementation, the expression of the TGF-β mRNA gene was the only gene that decreased significantly (p = 0.04) together with improved asthma control and spirometric parameters.

CONCLUSIONS: VitD supplementation down regulated the gene expression of TGF-β and improved asthma control level, but it did not significantly affect the gene expression of TNF-α and IGF-1.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Zhang J, Dong L. Status and prospects: Personalized treatment and biomarker for airway remodeling in asthma. J Thorac Dis. 2020;12(10):6090-101. https://doi.org/10.21037/jtd-20-1024 PMid:33209441 DOI: https://doi.org/10.21037/jtd-20-1024

Yang YC, Zhang N, Van Crombruggen K, Hu GH, Hong SL, Bachert C. Transforming growth factor‐beta1 in inflammatory airway disease: A key for understanding inflammation and remodeling. Allergy. 2012;67(10):1193-202. https://doi.org/10.1111/j.1398-9995.2012.02880.x PMid:22913656 DOI: https://doi.org/10.1111/j.1398-9995.2012.02880.x

Al-Alawi M, Hassan T, Chotirmall SH. Transforming growth factor β and severe asthma: A perfect storm. Respir Med. 2014;108(10):1409-23. https://doi.org/10.1016/j.rmed.2014.08.008 PMid:25240764 DOI: https://doi.org/10.1016/j.rmed.2014.08.008

Makinde T, Murphy RF, Agrawal DK. The regulatory role of TGF-beta in airway remodeling in asthma. Immunol Cell Biol. 2007;85(5):348-56. https://doi.org/10.1038/sj.icb.7100044 PMid:17325694 DOI: https://doi.org/10.1038/sj.icb.7100044

Gong JH, Cho IH, Shin D, Han SY, Park SH, Kang YH. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice. Lab Invest. 2014;94(3):297-308. https://doi.org/10.1038/labinvest.2013.137 PMid:24378645 DOI: https://doi.org/10.1038/labinvest.2013.137

Miramani Mirzamani MS, Nourani MR, Fooladi AA, Zare S, Ebrahimi M, Yazdani S, et al. Increased expression of transforming growth factor-β and receptors in primary human airway fibroblast from chemical inhalation patients. Iran J Allergy Asthma Immunol. 2013;12(2):144-52. PMid:23754353

Babu KS, Davies DE, Holgate ST. Role of tumor necrosis factor alpha in asthma. Immunol Allergy Clin North Am. 2004;24(4):583-97, v-vi. https://doi.org/10.1016/j.iac.2004.06.010 PMid:15474860 DOI: https://doi.org/10.1016/j.iac.2004.06.010

Brightling C, Berry M, Amrani Y. Targeting TNF-alpha: A novel therapeutic approach for asthma. J Allergy Clin Immunol. 2008;121(1):5-12. https://doi.org/10.1016/j.jaci.2007.10.028 PMid:18036647 DOI: https://doi.org/10.1016/j.jaci.2007.10.028

Mu M, Wu F, He J, Tang X, Ma H, Guo S, et al. Insulin-like growth factor 1 inhibits phagocytosis of alveolar epithelial cells in asthmatic mice. Mol Med Rep. 2019;(3):2381-8. https://doi.org/10.3892/mmr.2019.10456 PMid:31322198 DOI: https://doi.org/10.3892/mmr.2019.10456

Lee H, Kim SR, Oh Y, Cho SH, Schleimer RP, Lee YC. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma. Am J Respir Cell Mol Biol. 2014;50(4):667-77. https://doi.org/10.1165/rcmb.2013-0397TR PMid:24219511 DOI: https://doi.org/10.1165/rcmb.2013-0397TR

Hall SC, Agrawal DK. Vitamin D and bronchial asthma: An overview of data from the past 5 years. Clin Ther. 2017;39(5):917-29. https://doi.org/10.1016/j.clinthera.2017.04.002 PMid:28449868 DOI: https://doi.org/10.1016/j.clinthera.2017.04.002

Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31(1):143-78. https://doi.org/10.1183/09031936.00138707 PMid:18166595 DOI: https://doi.org/10.1183/09031936.00138707

Celli BR. ATS standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Eur Respir Rev. 1996;6(39):276-81.

Talaei A, Yadegari N, Rafee M, Rezvanfar MR, Moini A. Prevalence and cut-off point of vitamin D deficiency among secondary students of Arak, Iran in 2010. Indian J Endocrinol Metab. 2012;16(5):786. https://doi.org/10.4103/2230-8210.100676 PMid:23087865 DOI: https://doi.org/10.4103/2230-8210.100676

Saad K, Abd Aziz NH, El-Houfey AA, El-Asheer O, Mohamed SA, Ahmed AE, et al. Trial of vitamin D supplementation in infants with bronchiolitis: A randomized, double-blind, placebo-controlled study. Pediatr Allergy Immunol Pulmonol. 2015;28(2):102-6. DOI: https://doi.org/10.1089/ped.2015.0492

Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM. High-fidelity mRNA amplification for gene profiling. Nat Biotechnol. 2000;18(4):457-9. https://doi.org/10.1038/74546 PMid:10748532 DOI: https://doi.org/10.1038/74546

Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M. Vitamin D deficiency in children and its management: Review of current knowledge and recommendations. Pediatrics. 2008;122(2):398-417. https://doi.org/10.1542/peds.2007-1894 PMid:18676559 DOI: https://doi.org/10.1542/peds.2007-1894

Huh SY, Gordon CM. Vitamin D deficiency in children and adolescents: Epidemiology, impact and treatment. Rev Endocr Metab Disord. 2008;9(2):161-70. https://doi.org/10.1007/s11154-007-9072-y PMid:18175220 DOI: https://doi.org/10.1007/s11154-007-9072-y

Zedan M, Settin A, Farag M, Ezz-Elregal M, Osman E, Fouda A. Prevalence of bronchial asthma among Egyptian school children. Egypt J Bronchol. 2009;3(2):124-30.

Holmlund-Suila E, Koskivirta P, Metso T, Andersson S, Mäkitie O, Viljakainen HT. Vitamin D deficiency in children with a chronic illness–seasonal and age-related variations in serum 25-hydroxy vitamin D concentrations. PLoS One. 2013;8(4):e60856. https://doi.org/10.1371/journal.pone.0060856 PMid:23585857 DOI: https://doi.org/10.1371/journal.pone.0060856

Kolokotroni O, Papadopoulou A, Middleton N, Kouta C, Raftopoulos V, Nicolaidou P, et al. Vitamin D levels and status amongst asthmatic and non-asthmatic adolescents in Cyprus: A comparative cross-sectional study. BMC Public Health. 2015;15:48. https://doi.org/10.1186/s12889-015-1385-2 PMid:25638166 DOI: https://doi.org/10.1186/s12889-015-1385-2

Hatami G, Ghasemi K, Motamed N, Firoozbakht S, Movahed A, Farrokhi S. Relationship between Vitamin D and childhood asthma: A case–control study. Iran J Pediatr. 2014;24(6):710-4. PMid:26019776

Alyasin S, Momen T, Kashef S, Alipour A, Amin R. The relationship between serum 25 hydroxy Vitamin D levels and asthma in children. Allergy Asthma Immunol Res. 2011;3(4):251. https://doi.org/10.4168/aair.2011.3.4.251 PMid:21966605 DOI: https://doi.org/10.4168/aair.2011.3.4.251

Whiting SJ, Langlois KA, Vatanparast H, Greene-Finestone LS. The vitamin D status of Canadians relative to the 2011 Dietary Reference Intakes: An examination in children and adults with and without supplement use. Am J Clin Nutr. 2011;94(1):128-35. https://doi.org/10.3945/ajcn.111.013268 PMid:21593503 DOI: https://doi.org/10.3945/ajcn.111.013268

Ramadan A, Sallam SF, Elsheikh MS, Ishakd SR, Abdelsayed MG, Salah M, et al. VDR gene expression in asthmatic children patients in relation of vitamin D Status and supplementation. Gene Rep. 2019;15:100387. https://doi.org/10.1016/j.genrep.2019.100387 DOI: https://doi.org/10.1016/j.genrep.2019.100387

Siezen CL, Bont L, Hodemaekes HM, Ermers MJ, Doornbos G, Van’t Slot R, et al. Genetic susceptibility to respiratory syncytial virus bronchiolitis in preterm children is associated with airway remodeling genes and innate immune genes. Pediatr Infect Dis J. 2009;28(4):333-5. https://doi.org/10.1097/INF.0b013e31818e2aa9 PMid:19258923 DOI: https://doi.org/10.1097/INF.0b013e31818e2aa9

Chen Y, Xu T. Association of vitamin D receptor expression with inflammatory changes and prognosis of asthma. Exp Ther Med. 2018;16(6):5096-102. https://doi.org/10.3892/etm.2018.6867 PMid:30542464 DOI: https://doi.org/10.3892/etm.2018.6867

Han YY, Yan Q, Chen W, Forno E, Celedón JC. Serum insulin-like growth factor-1, asthma, and lung function among British adults. Ann Allergy Asthma Immunol. 2021;126(3):284-91.e2. https://doi.org/10.1016/j.anai.2020.12.005 PMid:33316372 DOI: https://doi.org/10.1016/j.anai.2020.12.005

Manuyakorn W, Kamchaisatian W, Atamasirikul K, Sasisakulporn C, Direkwattanachai C, Benjaponpitak S. Serum TGF-beta1 in atopic asthma. Asian Pac J Allergy Immunol. 2008;26(4):185-9. PMid:19317336

Redington AE, Madden J, Frew AJ, Djukanovic R, Roche WR, Holgate ST, et al. Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med. 1997;156(2 Pt 1):642-7. https://doi.org/10.1164/ajrccm.156.2.9605065 PMid:9279252 DOI: https://doi.org/10.1164/ajrccm.156.2.9605065

Halwani R, Al-Muhsen S, Hamdan Al-Jahdali H, Hamid Q. Role of transforming growth factor–b in airway remodeling in asthma. Am J Respir Cell Mol Biol. 2011;44:127-33. DOI: https://doi.org/10.1165/rcmb.2010-0027TR

Joseph J, Benedict S, Badrinath P, Wassef S, Joseph M, Abdulkhalik S, et al. Elevation of plasma transforming growth factor β1 levels in stable nonatopic asthma. Ann Allergy Asthma Immunol. 2003;91(5):472-6. https://doi.org/10.1016/S1081-1206(10)61516-5 PMid:14692431 DOI: https://doi.org/10.1016/S1081-1206(10)61516-5

Ozyilmaz E, Canbakan S, Capan N, Erturk A, Gulhan M. Correlation of plasma transforming growth factor beta 1 with asthma control test. Allergy Asthma Proc. 2009;30(1):35-40. https://doi.org/10.2500/aap.2009.30.3192 PMid:19331718 DOI: https://doi.org/10.2500/aap.2009.30.3192

Ivanova JI, Bergman R, Birnbaum HG, Colice GL, Silverman RA, McLaurin K. Effect of asthma exacerbations on health care costs among asthmatic patients with moderate and severe persistent asthma. J Allergy Clin Immunol. 2012;129(5):1229-35. https://doi.org/10.1016/j.jaci.2012.01.039 PMid:22326484 DOI: https://doi.org/10.1016/j.jaci.2012.01.039

El-Sayed ZA, El-Hakim IZ, El-Kerdani TA, Ghanem HM. Serum transforming growth factor-beta1 in asthmatic children. Egypt J Pediatr Allergy Immunol. 2004;2(1):46-51. DOI: https://doi.org/10.21608/ejpa.2020.81770

Isik S, Ozuguz U, Tutuncu YA, Erden G, Berker D, Acar K, et al. Serum transforming growth factor-beta levels in patients with vitamin D deficiency. Eur J Intern Med. 2012;23(1):93-7. https://doi.org/10.1016/j.ejim.2011.09.017 PMid:22153539 DOI: https://doi.org/10.1016/j.ejim.2011.09.017

Howell JE, McAnulty RJ. TGF-beta: Its role in asthma and therapeutic potential. Curr Drug Targets. 2006;7(5):547-65. https://doi.org/10.2174/138945006776818692 PMid:16719766 DOI: https://doi.org/10.2174/138945006776818692

Chakir J, Shannon J, Molet S, Fukakusa M, Elias J, Laviolette M, et al. Airway remodeling-associated mediators in moderate to severe asthma: Effect of steroids on TGF-beta, IL-11, IL-17, and Type I and Type III collagen expression. J Allergy Clin Immunol. 2003;111(6):1293-8. https://doi.org/10.1067/mai.2003.1557 PMid:12789232 DOI: https://doi.org/10.1067/mai.2003.1557

Bereket A, Cesur Y, Özkan B, Adal E, Turan S, Onan SH, et al. Circulating insulin-like growth factor binding protein-4 (IGFBP-4) is not regulated by parathyroid hormone and vitamin D in vivo: Evidence from children with rickets. J Clin Res Pediatr Endocrinol. 2010;2(1):17-20. https://doi.org/10.4274/jcrpe.v2i1.17 PMid:21274331 DOI: https://doi.org/10.4274/jcrpe.v2i1.17

Soliman AT, Al Khalaf F, AlHemaidi N, Al Ali M, Al Zyoud M, Yakoot K. Linear growth in relation to the circulating concentrations of insulin-like growth factor I, parathyroid hormone, and 25-hydroxy vitamin D in children with nutritional rickets before and after treatment: Endocrine adaptation to Vitamin D deficiency. Metabolism. 2008;57(1):95-102. https://doi.org/10.1016/j.metabol.2007.08.011 PMid:18078865 DOI: https://doi.org/10.1016/j.metabol.2007.08.011

Ameri P, Giusti A, Boschetti M, Murialdo G, Minuto F, Ferone D. Interactions between vitamin D and IGF‐I: From physiology to clinical practice. Clin Endocrinol. 2013;79(4):457-63. https://doi.org/10.1111/cen.12268 PMid:23789983 DOI: https://doi.org/10.1111/cen.12268

Sinha-Hikim I, Duran P, Shen R, Lee M, Friedman TC, Davidson MB. Effect of long term vitamin D supplementation on biomarkers of inflammation in Latino and African-American subjects with pre-diabetes and hypovitaminosis D. Horm Metab Res. 2015;47(4):280-3. https://doi.org/10.1055/s-0034-1383652 PMid:25011019 DOI: https://doi.org/10.1055/s-0034-1383652

Trummer C, Schwetz V, Pandis M, Grübler MR, Verheyen N, Gaksch M, et al. Effects of Vitamin D supplementation on IGF-1 and calcitriol: A randomized-controlled trial. Nutrients. 2017;9(6):623. https://doi.org/10.3390/nu9060623 PMid:28629132 DOI: https://doi.org/10.3390/nu9060623

Kamycheva E, Berg V, Jorde R. Insulin-like growth factor I, growth hormone, and insulin sensitivity: The effects of a one-year cholecalciferol supplementation in middle-aged overweight and obese subjects. Endocrine. 2013;43:412-18. https://doi.org/10.1007/s12020-012-9825-6 PMid:23109222 DOI: https://doi.org/10.1007/s12020-012-9825-6

Kord-Varkaneh H, Rinaldi G, Hekmatdoost A, Fatahi S, Tan SC, Shadnoush M, et al. The influence of vitamin D supplementation on IGF-1 levels in humans: A systematic review and meta-analysis. Ageing Res Rev. 2020;57:100996. https://doi.org/10.1016/j.arr.2019.100996 PMid:31816443 DOI: https://doi.org/10.1016/j.arr.2019.100996

Hyppönen E, Boucher BJ, Berry DJ, Power C. 25-hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years of age: A cross-sectional study in the 1958 British Birth Cohort. Diabetes. 2008;57(2):298-305. https://doi.org/10.2337/db07-1122 PMid:18003755 DOI: https://doi.org/10.2337/db07-1122

Bogazzi F, Rossi G, Lombardi M, Tomisti L, Sardella C, Manetti L, et al. Vitamin D status may contribute to serum insulin-like growth factor I concentrations in healthy subjects. J Endocrinol Invest. 2011;34(8):e200-3. https://doi.org/10.3275/7228 PMid:20671418

Ameri P, Giusti A, Boschetti M, Bovio M, Teti C, Leoncini G, et al. Vitamin D increases circulating IGF1 in adults: Potential implication for the treatment of GH deficiency. Eur J Endocrinol. 2013;169(6):767-72. https://doi.org/10.1530/EJE-13-0510 PMid:24005315 DOI: https://doi.org/10.1530/EJE-13-0510

Chandler PD, Scott JB, Drake BF, Ng K, Manson JE, Rifai N, et al. Impact of vitamin D supplementation on inflammatory markers in African Americans: Results of a four-arm, randomized, placebo-controlled trial. Cancer Prev Res (Phila). 2014;7(2):218-25. https://doi.org/10.1158/1940-6207.CAPR-13-0338-T PMid:24327720 DOI: https://doi.org/10.1158/1940-6207.CAPR-13-0338-T

Dadaei T, Safapoor MH, Asadzadeh Aghdaei H, Balaii H, Pourhoseingholi MA, Naderi N, et al. Effect of vitamin D3 supplementation on TNF-α serum level and disease activity index in Iranian IBD patients. Gastroenterol Hepatol Bed Bench. 2015;8(1):49-55. PMid:25584176

Haddad Kashani H, Seyed Hosseini E, Nikzad H, Soleimani A, Soleimani M, Tamadon MR, et al. The effects of Vitamin D supplementation on signaling pathway of inflammation and oxidative stress in diabetic hemodialysis: A randomized, double-blind, placebo-controlled trial. Front Pharmacol. 2018;9:50. https://doi.org/10.3389/fphar.2018.00050 DOI: https://doi.org/10.3389/fphar.2018.00050

Kuo YT, Kuo CH, Lam KP, Chu YT, Wang WL, Huang CH, et al. Effects of vitamin D3 on expression of tumor necrosis factor-alpha and chemokines by monocytes. J Food Sci. 2010;75(6):H200-4. https://doi.org/10.1111/j.1750-3841.2010.01704.x PMid:20722932 DOI: https://doi.org/10.1111/j.1750-3841.2010.01704.x

Downloads

Published

2022-05-19

How to Cite

1.
Ramadan A, Sallam S, Yousef R, Elsheikh M, Ali A, Elhusseny Y, Ishak S. Evaluation of IGF-1, TNF-α, and TGF-β Gene Expression after Oral Vitamin D Supplementation in School-Aged Children with Chronic Bronchial Asthma. Open Access Maced J Med Sci [Internet]. 2022 May 19 [cited 2024 Nov. 21];10(B):1358-64. Available from: https://oamjms.eu/index.php/mjms/article/view/9266