Unused Parts of Jackfruit (Artocarpus heterophyllus): Prospective In Vitro Antioxidative Activity
DOI:
https://doi.org/10.3889/oamjms.2022.9274Keywords:
Antioxidant, Artocarpus heterophyllus, Flavonoid, Free Radical, PhenolAbstract
BACKGROUND: Free radical is unstable and highly reactive, which may lead to oxidative stress that causes various diseases, that is, diabetes mellitus. Antioxidant can prevent oxidation process by scavenging free radicals. Jackfruit (Artocarpus heterophyllus) is a native tropical fruit that can easily be found in Indonesia. When the flesh is commonly eaten, the unused parts – such as the leaves, fruit peels, and pulps will be considered waste to be thrown away. However, these unused parts of Jackfruit are rich in antioxidant compounds that potentially can work as therapeutic agents.
AIM: The aim of the study was to determine the antioxidant properties of leaves, peels, and pulps of A. heterophyllus by calculating their antioxidant activity index (AAI) with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Cupric Ion-Reducing Antioxidant Capacity (CUPRAC) method; total phenolic content (TPC) and total flavonoid content (TFC); observing the correlation between TPC and TFC with AAI DPPH and CUPRAC; as well as the correlation between AAI DPPH and CUPRAC.
MATERIALS AND METHODS: Extraction process was carried out using reflux method using three different polarity solvents. UV-visible spectrophotometer was used to determine the TPC, TFC, AAI DPPH, and AAI CUPRAC. Pearson’s method was used to observe the correlation between TPC and TFC with AAI DPPH and CUPRAC, as well as the correlation between both methods.
RESULTS: The AAI in DPPH method were varied from 0.0310 to 36.8852, while CUPRAC from 0.1156 to 1.2503. Ethanol leaves extract gave the highest TPC value (5.53 g GAE/100 g) and n-hexane peels extract exposed the highest TFC value (16.07 g QE/100 g). The correlation between TPC and AAI of leaves, peels, and pulps extracts with DPPH method, as well as between TFC and AAI CUPRAC of peels extracts was positive and significant. Rutin was determined as the marker compound, valuing at 0.0106%.
CONCLUSION: Phenols and flavonoids (including rutin) content contributed to DPPH and CUPRAC antioxidant activity. The antioxidant property between both methods was not linear in leaves, peels, and pulps extracts. Unused parts (peels and leaves) of A. heterophyllus might be potential to be developed as natural antioxidant sources.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Yamin R, Mistriyani S, Ihsan S, Armadany FI, Sahumena MH, Fatimah WO, et al. Determination of total phenolic and flavonoid contents of jackfruit peel and in vitro antiradical test. Food Res. 2020;5(1):84-90. https://doi.org/10.26656/fr.2017.5(1).350 DOI: https://doi.org/10.26656/fr.2017.5(1).350
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2014;30(1):11-26. https://doi.org/10.1007/s12291-014-0446-0 PMid:25646037 DOI: https://doi.org/10.1007/s12291-014-0446-0
Sayuti NH, Kamarudin AA, Razak NA, Saad N, Dek MS, Esa NM. Optimized aqueous extraction conditions for maximal phenolics, flavonoids and antioxidant capacity from Artocarpus heterophyllus (jackfruit) leaves by response surface methodology (RSM). Malaysian J Med Health Sci. 2020;16(2):135-44. DOI: https://doi.org/10.15376/biores.16.2.3255-3271
Buddhisuharto AK, Pramastya H, Insanu M, Fidrianny I. An updated review of phytochemical compounds and pharmacology activities of Artocarpus genus. Biointerface Res Appl Chem. 2021;11(6):14898-905. https://doi.org/10.33263/BRIAC116.1489814905 DOI: https://doi.org/10.33263/BRIAC116.1489814905
Utari A, Warly L. Tannin contents of jackfruit leaves (Artocarpus heterophyllus) extract and moringa leaves (Moringa oleifera) extract as functional additive feed in ruminan livestock. IOP Conf. Ser: Earth Environ. Sci. 2021;757 012054. DOI: https://doi.org/10.1088/1755-1315/757/1/012054
Adan AA, Ojwang RA, Muge EK, Mwanza BK, Nyaboga EN. Phytochemical composition and essential mineral profile, antioxidant and antimicrobial potential of unutilized parts of jackfruit. Food Res. 2020;4(4):1125-34. https://doi.org/10.26656/fr.2017.4(4).326 DOI: https://doi.org/10.26656/fr.2017.4(4).326
Wen L, Zhao Y, Jiang Y, Yu L, Zeng X, Yang J, et al. Identification of a flavonoid c-glycoside as potent antioxidant. Free Radic Biol Med. 2017;110:92-101. https://doi.org/10.1016/j.freeradbiomed.2017.05.027 PMid:28587909 DOI: https://doi.org/10.1016/j.freeradbiomed.2017.05.027
Drouet S, Leclerc EA, Garros L, Tungmunnithum D, Kabra A, Abbasi BH, et al. A green ultrasound-assisted extraction optimization of the natural antioxidant and anti-aging flavonolignans from milk thistle Silybum marianum (L.) gaertn. fruits for cosmetic applications. Antioxidants. 2019;8(8):304. https://doi.org/10.3390/antiox8080304 PMid:31416140 DOI: https://doi.org/10.3390/antiox8080304
Gugala AK, Kruczek M, Smolen IL, Kaszycki P. Antioxidants and health-beneficial nutrients in fruits of eighteen Cucurbita cultivars: Analysis of diversity and dietary implications. Molecules. 2020;25(8):1792. https://doi.org/10.3390/molecules25081792 PMid:32295156 DOI: https://doi.org/10.3390/molecules25081792
Zhang L, Tu Z, Xie X, Wang H, Wang H, Wang Z, et al. Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a-glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chem. 2017;234:303-13. https://doi.org/10.1016/j.foodchem.2017.05.003 PMid:28551240 DOI: https://doi.org/10.1016/j.foodchem.2017.05.003
Shanmugapriya K, Saravana PS, Payal H, Mohammed SP, Binnie W. Antioxidant activity, total phenolic and flavonoid contents of Artocarpus heterophyllus and Manilkara zapota seeds and its reduction potential. Int J Pharm Pharm Sci. 2011;3(5):256-60.
Mustafa HM, Amin NA, Zakaria R, Anuar MS, Baharrudin AS, Hafid HS, et al. Dual impact of different drying treatments and ethanol/water ratios on antioxidant properties and colour attribute of jackfruit leaves (Artocarpus heterophyllus lam.) mastura variety (J35). Bioresources. 2020;15(3):5122-40. DOI: https://doi.org/10.15376/biores.15.3.5122-5140
Giromini C, Tretola M, Baldi A, Ottoboni M, Rebucci R, Manoni M, et al. Total phenolic content and antioxidant capacity of former food products intended as alternative feed ingredients. Ital J Anim Sci. 2020;19(1):1387-92. https://doi.org/10.1080/1828051X.2020.1844086 DOI: https://doi.org/10.1080/1828051X.2020.1844086
Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10(3):178-82. https://doi.org/10.38212/2224-6614.2748 DOI: https://doi.org/10.38212/2224-6614.2748
Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol. 2021;22(7):3380. https://doi.org/10.3390/ijms22073380 PMid:33806141 DOI: https://doi.org/10.3390/ijms22073380
Insanu M, Fidrianny I, Imtinan NH, Kusmardiyani S. Liberica coffee (coffea liberica l.) from three different regions: In vitro antioxidant activities. Biointerface Res Appl Chem. 2021;11(5):13031-41. https://doi.org/10.33263/BRIAC115.1303113041 DOI: https://doi.org/10.33263/BRIAC115.1303113041
Ko FN, Cheng ZJ, Lin CN, Teng CM. Scavenger and antioxidant properties of prenylflavones isolated from Artocarpus heterophyllus. Free Radic Biol Med. 1998;25(2):160-8. https://doi.org/10.1016/s0891-5849(98)00031-8 PMid:9667491 DOI: https://doi.org/10.1016/S0891-5849(98)00031-8
Alam MN, Bristi NJ, Raffiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2012;21:143-52. https://doi.org/10.1016/j.jsps.2012.05.002 PMid:24936134 DOI: https://doi.org/10.1016/j.jsps.2012.05.002
Rahmadi A, Sabarina Y, Agustin S. Different drying temperatures modulate chemical and antioxidant properties of mandai cempedak (Artocarpus integer). F1000Res. 2018;7:1706. https://doi.org/10.12688/f1000research.16617.2 PMid:32201564 DOI: https://doi.org/10.12688/f1000research.16617.1
Pfennig BW. Principle of Inorganic Chemistry. Hoboken, NJ: John and Willey Sons; 2015.
Pisoschi AM, Negulescu GP. Methods for total antioxidant activity determination: A review. J Biochem Anal Biochem. 2011;1(1):106. https://doi.org/10.4172/2161-1009.1000106 DOI: https://doi.org/10.4172/2161-1009.1000106
Scherer S, Godoy HT. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009;112(3):654-8. https://doi.org/10.1016/j.foodchem.2008.06.026 DOI: https://doi.org/10.1016/j.foodchem.2008.06.026
Loizzo MR, Tundis R, Chandrika UG, Abeysekera AM, Menichini F, Frega NG. Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) leaves extracts. J Food Sci. 2010;75(5):291-5. https://doi.org/10.1111/j.1750-3841.2010.01614.x PMid:20629886 DOI: https://doi.org/10.1111/j.1750-3841.2010.01614.x
Gupta AK, Rather MA, Jha AK, Shashank A, Singhai S, Sharma M, et al. Artocarpus lakoocha Roxb. and Artocarpus heterophyllus Lam. flowers: New sources of bioactive compounds. Plants. 2020;9:1329. https://doi.org/10.3390/plants9101329 PMid:33050190 DOI: https://doi.org/10.3390/plants9101329
Soubir T. Antioxidant activities of some local Bangladeshi fruits (Artocarpus heterophyllus, Annona squamosa, Terminalia bellirica, Syzygium samarangense, Averrhoa carambola, and Olea europaea). Chin J Biotechnol. 2007;23(2):257-61. PMid:17460898
Zhu K, Zhang Y, Nie S, Xu F, He S, Gong D, et al. Physicochemical properties and in vitro antioxidant activities in polysaccharide from Artocarpus heterophyllus Lam. Pulp Carbohydr Polym. 2017;155:354-61. https://doi.org/10.1016/j.carbpol.2016.08.074 PMid:27702522 DOI: https://doi.org/10.1016/j.carbpol.2016.08.074
Ajiboye BO, Ojo OA, Oyinloye BE, Okesola MA, Oluwatosin A, Boligon AA, et al. Investigation of the in vitro antioxidant potential of polyphenolic-rich extract of Artocarpus heterophyllus Lam stem bark and its antidiabetic activity in streptozotocin-induced diabetic rats. J Evid Based Integr Med. 2020;25:2515690X2091612. https://doi.org/10.1177/2515690x20916123 PMid:32423242 DOI: https://doi.org/10.1177/2515690X20916123
Ilmi HM, Elya B, Handayani R. Association between total phenol and flavonoid contents in Artocarpus heterophyllus (jackfruit) bark and leaf extracts and lipoxygenase inhibition. Int J Appl Pharm. 2020;12(1):252-6. https://doi.org/10.22159/ijap.2020.v12s1.FF055 DOI: https://doi.org/10.22159/ijap.2020.v12s1.FF055
Daud MN, Fatanah DN, Abdullah N, Ahmad R. Evaluation of antioxidant potential of Artocarpus heterophyllus l. J33 variety fruit waste from different extraction methods and identification of phenolic constituents by LCMS. Food Chem. 2017;232(1):621-32. https://doi.org/10.1016/j.foodchem.2017.04.018 PMid:28490120 DOI: https://doi.org/10.1016/j.foodchem.2017.04.018
Eve A, Aliero AA, Nalubiri D, Adeyemo RO, Akinola SA, Pius T, et al. In vitro antibacterial activity of crude extracts of Artocarpus heterophyllus seeds against selected diarrhoea-causing superbug bacteria. Sci World J. 2020;2020:9813970. https://doi.org/10.1155/2020/9813970 PMid:32963501 DOI: https://doi.org/10.1155/2020/9813970
Jagtap UB, Panaskar SN, Bapat VA. Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus lam.) fruit pulp. Plant Foods Hum Nutr. 2010;65(2):99-104. https://doi.org/10.1007/s11130-010-0155-7 PMid:20198442 DOI: https://doi.org/10.1007/s11130-010-0155-7
Hartati R, Nadifan HI, Fidrianny I. Crystal guava (Psidium guajava l. “crystal”): Evaluation of in vitro antioxidant capacities and phytochemical content. Sci World J. 2020;2020:9413727. https://doi.org/10.1155/2020/9413727 PMid:32952456 DOI: https://doi.org/10.1155/2020/9413727
Ajiboye BO, Ojo OA, Adeyonu O, Imiere D, Olayide I, Oluwaseun FA, et al. Inhibitory effect on key enzymes relevant to acute type-2 diabetes and antioxidative activity of ethanolic extract of Artocarpus heterophyllus stem bark. J Acute Dis. 2016;5(5):423-9. http://doi.org/10.1016%2Fj.joad.2016.08.011 DOI: https://doi.org/10.1016/j.joad.2016.08.011
Pereira DM, Valentao P, Pereira JA, Andrade PB. Phenolics: From chemistry to biology. Molecules. 2009;14:2202-11. https://doi.org/10.3390%2Fmolecules14062202 DOI: https://doi.org/10.3390/molecules14062202
Wang Z, Tang C, Xiao G, Dai F, Lin S, Li Z, et al. Comparison of free and bound phenolic compositions and antioxidant activities of leaves from different mulberry varieties. BMC Chem. 2021;15(21):1-15. https://doi.org/10.1186/s13065-021-00747-0 PMid:33781331 DOI: https://doi.org/10.1186/s13065-021-00747-0
Araujo ME, Franco YE, Alberto TG, Sobreiro MA, Conrado MA, Priolli DG, et al. Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities. Food Chem. 2013;141(1):266-73. https://doi.org/10.1016/j.foodchem.2013.02.127 PMid:23768357 DOI: https://doi.org/10.1016/j.foodchem.2013.02.127
Pivec T, Kargl R, Maver U, Bracic M, Elschner T, Zagar E, et al. Chemical structure-antioxidant activity relationship of water-based enzymatic polymerized rutin and its wound healing potential. Polymers. 2019;11(10):1566. https://doi.org/10.3390/polym11101566 PMid:31561552. DOI: https://doi.org/10.3390/polym11101566
Downloads
Published
How to Cite
License
Copyright (c) 2022 Muhamad Insanu, Hegar Pramasatya, Anastasia Karina Buddhisuharto, Chrisanta Tarigan, Aliya Azkia Zahra, Ariranur Haniffadi, Nurma Sabila, Irda Fidrianny (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0