Vitamin D Receptor Gene Polymorphism Affecting Vitamin D and Beta Carotene Deficiency in Tuberculosis Patients
DOI:
https://doi.org/10.3889/oamjms.2022.9284Keywords:
Case control, Fat-soluble vitamin, Mineral, Polymorphisms, 25(OH)D SerumAbstract
BACKGROUND: The working mechanism of Vitamin D in tuberculosis (TB), which is influenced by the work of other vitamins and minerals, remains questionable. This is particularly the case regarding the effect of polymorphism of the Vitamin D receptor (VDR) gene.
AIM: The objective of this research was to examine the differences in serum levels of 25(OH)D, retinol, beta-carotene, and calcium in TB patients compared to healthy people who have VDR gene polymorphisms (TaqI, BsmI, and FokI).
METHODS: This research was a case–control study involving 176 men and women with a pair of VDR gene polymorphisms, consisting of 94 TB patients (TB group) and 82 healthy people (control group) in North Sumatera, Indonesia.
RESULTS: There was a significant difference in Vitamin D levels between the TB and control groups (p = 0.001), with Vitamin D deficiency of 85.1% in the TB group and 100% in the control group. Significant differences were found in retinol levels and beta-carotene, but there were no significant differences in calcium levels (p = 0.619). Based on these results, there was a significant difference between the TBC and normal group in 25(OH)D, retinol, and beta-carotene serum.
CONCLUSION: This study showed that 25(OH)D serum was higher in the TBC group than the control group, but lower in retinol and beta-carotene serum. There is no difference in calcium serum level in both groups.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Andraos C, Koorsen G, Knight JC, Bornman L. Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis, and TaqI polymorphism. Hum Immunol. 2011;72(3):262-8. https://doi.org/10.1016/j.humimm.2010.12.010 PMid:21168462 DOI: https://doi.org/10.1016/j.humimm.2010.12.010
Areeshi MY, Mandal RK, Panda AK, Haque S. Vitamin D receptor ApaI gene polymorphism and tuberculosis susceptibility: A meta-analysis. Genet Test Mol Biomarkers. 2014;18(5):323-9. https://doi.org/10.1089/gtmb.2013.0451 PMid:24571812 DOI: https://doi.org/10.1089/gtmb.2013.0451
Xu C, Tang P, Ding C, Li C, Chen J, Xu Z, et al. Vitamin D receptor Gene FOKI polymorphism contributes to increasing the risk of HIV-negative tuberculosis: Evidence from a meta-analysis. PLoS One. 2015;10(10):e0140634. https://doi.org/10.1371/journal.pone.0140634 PMid:26485279 DOI: https://doi.org/10.1371/journal.pone.0140634
Sari DK, Tala ZZ, Lestari S, Hutagalung SV, Ganie RA. Lifestyle differences in rural and urban areas affected the level of Vitamin D in women with single nucleotide polymorphism in north sumatera. Asian J Clin Nutr. 2017;9(2):57-63. https://doi.org/10.3923/ajcn.2017.57.63 DOI: https://doi.org/10.3923/ajcn.2017.57.63
Rashedi J, Asgharzadeh M, Moaddab SR, Sahebi L, Khalili M, Mazani M, et al. Vitamin D receptor gene polymorphism and Vitamin D plasma concentration: Correlation with susceptibility to tuberculosis. Adv Pharm Bull. 2014;4(Suppl 2):607-11. https://doi.org/10.5681/apb.2014.089 PMid:25671196
Sun YP, Cai S. Vitamin D receptor FokI gene polymorphism and tuberculosis susceptibility: A meta-analysis. Genet Mol Res. 2015;14(2):6156-63. https://doi.org/10.4238/2015.June.9.1 PMid:26125816 DOI: https://doi.org/10.4238/2015.June.9.1
Zhao ZZ, Zhang TZ, Gao YM, Feng FM. Meta-analysis of relationship of Vitamin D receptor gene polymorphism and tuberculosis susceptibility. Zhonghua Jie He He Hu Xi Za Zhi. 2009;32(10):748-51. PMid:20079241
Wu YJ, Yang X, Wang XX, Qiu MT, You YZ, Zhang ZX, et al. Association of Vitamin D receptor BsmI gene polymorphism with risk of tuberculosis: A meta-analysis of 15 studies. PLoS One. 2013;8(6):e66944. https://doi.org/10.1371/journal.pone.0066944 PMid:23825591 DOI: https://doi.org/10.1371/journal.pone.0066944
Huang L, Liu C, Liao G, Yang X, Tang X, Chen J. Vitamin D receptor gene foki polymorphism contributes to increasing the risk of tuberculosis: An update meta-analysis. Medicine (Baltimore). 2015;94(51):e2256. https://doi.org/10.1097/MD.0000000000002256 PMid:26705207 DOI: https://doi.org/10.1097/MD.0000000000002256
Areeshi MY, Mandal RK, Wahid M, Dar SA, Jawed A, Lohani M, et al. Vitamin D receptor apai (rs7975232) polymorphism confers decreased risk of pulmonary tuberculosis in overall and african population, but not in asians: Evidence from a meta-analysis. Ann Clin Lab Sci. 2017;47(5):628-37. PMid:29066494
Antony C, Mehto S, Tiwari BK, Singh Y, Natarajan K. Regulation of L-type voltage gated calcium channel CACNA1S in macrophages upon Mycobacterium tuberculosis infection. PLoS One. 2015;10(4):e0124263. https://doi.org/10.1371/journal.pone.0124263 PMid:25915405 DOI: https://doi.org/10.1371/journal.pone.0124263
Hoque MR, Muttalib MA, Chakraborty PK, Ahmed SS, Laila TR, Islam MM, et al. Serum calcium level among smear positive pulmonary tuberculosis patients in Bangladesh. Mymensingh Med J. 2013;22(3):427-31. PMid:23982528
Rohini K, Bhat S, Srikumar PS, Kumar AM. Assessment of serum calcium and phosphorus in pulmonary tuberculosis patients before, during and after chemotherapy. Indian J Clin Biochem. 2014;29(3):377-81. https://doi.org/10.1007/s12291-013-0383-3 PMid:24966490 DOI: https://doi.org/10.1007/s12291-013-0383-3
Aibana O, Franke MF, Huang CC, Galea JT, Calderon R, Zhang Z, et al. Impact of Vitamin A and carotenoids on the risk of tuberculosis progression. Clin Infect Dis. 2017;65(6):900-9. https://doi.org/10.1093/cid/cix476 PMid:28531276 DOI: https://doi.org/10.1093/cid/cix476
Qrafli M, El Kari K, Aguenaou H, Bourkadi JE, Sadki K, El Mzibri M. Low plasma Vitamin A concentration is associated with tuberculosis in Moroccan population: A preliminary case control study. BMC Res Notes. 2017;10(1):421. DOI: https://doi.org/10.1186/s13104-017-2737-z
World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and its Intervention. Geneva: Health Communications Australia Pvt. Limited, World Health Organization; 2000.
Holick MF. Optimal Vitamin D status for the prevention and treatment of osteoporosis. Drugs Aging. 2007;24(12):1017-29. https://doi.org/10.2165/00002512-200724120-00005 PMid:18020534 DOI: https://doi.org/10.2165/00002512-200724120-00005
Sari DK, Tala ZZ, Lestari S, Hutagalung SV, Ganie RA. Body mass index but not 25(OH)D serum is associated with bone mineral density among indonesian women in North Sumatera: A cross sectional study. Asian J Clin Nutr. 2017;9(1):37-43. DOI: https://doi.org/10.3923/ajcn.2017.37.43
Sari DK, Mega JY, Harahap J. Nutrition status related to clinical improvement in AFB-positive pulmonary tuberculosis patients in primary health centres in Medan, Indonesia. Open Access Maced J Med Sci. 2019;7(10):1621-7. https://doi.org/10.3889/oamjms.2019.338 PMid:31210811 DOI: https://doi.org/10.3889/oamjms.2019.338
Holick MF. The Vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153-65. https://doi.org/10.1007/s11154-017-9424-1 PMid:28516265 DOI: https://doi.org/10.1007/s11154-017-9424-1
Holick MF. The death D-fying Vitamin. Mayo Clin Proc. 2018;93(6):679-81. https://doi.org/10.1016/j.mayocp.2018.04.014 PMid:29866279 DOI: https://doi.org/10.1016/j.mayocp.2018.04.014
Grober U, Spitz J, Reichrath J, Kisters K, Holick MF. Vitamin D: Update 2013: From rickets prophylaxis to general preventive healthcare. Dermatoendocrinol. 2013;5(3):331-47. https://doi.org/10.4161/derm.26738 PMid:24516687 DOI: https://doi.org/10.4161/derm.26738
Harinarayan CV, Holick MF, Prasad UV, Vani PS, Himabindu G. Vitamin D status and sun exposure in India. Dermatoendocrinol. 2013;5(1):130-41. https://doi.org/10.4161/derm.23873 PMid:24494046 DOI: https://doi.org/10.4161/derm.23873
Holick MF. Evidence-based D-bate on health benefits of Vitamin D revisited. Dermatoendocrinol. 2012;4(2):183-90. https://doi.org/10.4161/derm.20015 PMid:22928075 DOI: https://doi.org/10.4161/derm.20015
Holick MF. The influence of Vitamin D on bone health across the life cycle. J Nutr. 2005;135(11):2726S-7. https://doi.org/10.1093/jn/135.11.2726S PMid:16251638 DOI: https://doi.org/10.1093/jn/135.11.2726S
Holick MF. Vitamin D: A d-lightful solution for health. J Investig Med. 2011;59(6):872-80. https://doi.org/10.2310/JIM.0b013e318214ea2d PMid:21415774 DOI: https://doi.org/10.2310/JIM.0b013e318214ea2d
McCullough PJ, Lehrer DS. Vitamin D, cod liver oil, sunshine, and phototherapy: Safe, effective and forgotten tools for treating and curing tuberculosis infections a comprehensive review. J Steroid Biochem Mol Biol. 2018;177:21-9. https://doi.org/10.1016/j.jsbmb.2017.07.027 PMid:28756294 DOI: https://doi.org/10.1016/j.jsbmb.2017.07.027
Joo MH, Han MA, Park SM, Shin HH. Vitamin D deficiency among adults with history of pulmonary tuberculosis in korea based on a nationwide survey. Int J Environ Res Public Health. 2017;14(4):399. https://doi.org/10.3390/ijerph14040399 PMid:28394278 DOI: https://doi.org/10.3390/ijerph14040399
Rode AK, Kongsbak M, Hansen MM, Lopez DV, Levring TB, Woetmann A, et al. Vitamin D counteracts Mycobacterium tuberculosis-induced cathelicidin downregulation in dendritic cells and allows Th1 differentiation and IFNgamma secretion. Front Immunol. 2017;8:656. https://doi.org/10.3389/fimmu.2017.00656 PMid:28620394 DOI: https://doi.org/10.3389/fimmu.2017.00656
Dou Y, Liang H, Wang Q, Ma A. Vitamin A, Vitamin E and beta-carotene nutritional status and antioxidase level analysis among tuberculosis patients. Wei Sheng Yan Jiu. 2013;42(3):364-8.
Martin SJ, Prince SE. Comparative modulation of levels of oxidative stress in the liver of anti-tuberculosis drug treated wistar rats by Vitamin B12, beta-carotene, and spirulina fusiformis: Role of NF-kappaB, iNOS, IL-6, and IL-10. J Cell Biochem. 2017;118(11):3825-33. https://doi.org/10.1002/jcb.26032 PMid:28387444 DOI: https://doi.org/10.1002/jcb.26032
Gupta A, Das PN, Bouzeyen R, Karmakar SP, Singh R, Bairagi N, et al. Restoration of cytosolic calcium inhibits Mycobacterium tuberculosis intracellular growth: Theoretical evidence and experimental observation. J Theor Biol. 2019;472:110-23. DOI: https://doi.org/10.1016/j.jtbi.2019.04.017
Song L, Cui R, Yang Y, Wu X. Role of calcium channels in cellular antituberculosis effects: Potential of voltage-gated calcium-channel blockers in tuberculosis therapy. J Microbiol Immunol Infect. 2015;48(5):471-6. DOI: https://doi.org/10.1016/j.jmii.2014.08.026
Alzugaray AE. Metabolism of calcium and principles of calcium therapy in pulmonary tuberculosis. Rev Asoc Med Argent. 1954;68(779-780):394-7.
Andosca JB, Foley JA. Calcium ribonate and Vitamin C (Nu 240-10) in the treatment of tuberculosis. Dis Chest. 1948;14(1):107-14. DOI: https://doi.org/10.1378/chest.14.1.107
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Dina Keumala Sari, Ridha Dharmajaya, Mutiara Indah Sari, Dewi Masyithah (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0