Vitamin D Receptor Gene Polymorphism Affecting Vitamin D and Beta Carotene Deficiency in Tuberculosis Patients

Authors

  • Dina Keumala Sari Tropical Medicine Study Program, Medical Faculty, Sumatera Utara University, Medan, North Sumatera, Indonesia
  • Ridha Dharmajaya Department of Neurosurgery, Medical Faculty, Sumatera Utara University, Medan, North Sumatera, Indonesia
  • Mutiara Indah Sari Department of Biochemistry, Medical Faculty, Sumatera Utara University, Medan, North Sumatera, Indonesia
  • Dewi Masyithah Department of Parasitology, Medical Faculty, Sumatera Utara University, Medan, North Sumatera, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9284

Keywords:

Case control, Fat-soluble vitamin, Mineral, Polymorphisms, 25(OH)D Serum

Abstract

BACKGROUND: The working mechanism of Vitamin D in tuberculosis (TB), which is influenced by the work of other vitamins and minerals, remains questionable. This is particularly the case regarding the effect of polymorphism of the Vitamin D receptor (VDR) gene.

AIM: The objective of this research was to examine the differences in serum levels of 25(OH)D, retinol, beta-carotene, and calcium in TB patients compared to healthy people who have VDR gene polymorphisms (TaqI, BsmI, and FokI).

METHODS: This research was a case–control study involving 176 men and women with a pair of VDR gene polymorphisms, consisting of 94 TB patients (TB group) and 82 healthy people (control group) in North Sumatera, Indonesia.

RESULTS: There was a significant difference in Vitamin D levels between the TB and control groups (p = 0.001), with Vitamin D deficiency of 85.1% in the TB group and 100% in the control group. Significant differences were found in retinol levels and beta-carotene, but there were no significant differences in calcium levels (p = 0.619). Based on these results, there was a significant difference between the TBC and normal group in 25(OH)D, retinol, and beta-carotene serum.

CONCLUSION: This study showed that 25(OH)D serum was higher in the TBC group than the control group, but lower in retinol and beta-carotene serum. There is no difference in calcium serum level in both groups.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Andraos C, Koorsen G, Knight JC, Bornman L. Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis, and TaqI polymorphism. Hum Immunol. 2011;72(3):262-8. https://doi.org/10.1016/j.humimm.2010.12.010 PMid:21168462 DOI: https://doi.org/10.1016/j.humimm.2010.12.010

Areeshi MY, Mandal RK, Panda AK, Haque S. Vitamin D receptor ApaI gene polymorphism and tuberculosis susceptibility: A meta-analysis. Genet Test Mol Biomarkers. 2014;18(5):323-9. https://doi.org/10.1089/gtmb.2013.0451 PMid:24571812 DOI: https://doi.org/10.1089/gtmb.2013.0451

Xu C, Tang P, Ding C, Li C, Chen J, Xu Z, et al. Vitamin D receptor Gene FOKI polymorphism contributes to increasing the risk of HIV-negative tuberculosis: Evidence from a meta-analysis. PLoS One. 2015;10(10):e0140634. https://doi.org/10.1371/journal.pone.0140634 PMid:26485279 DOI: https://doi.org/10.1371/journal.pone.0140634

Sari DK, Tala ZZ, Lestari S, Hutagalung SV, Ganie RA. Lifestyle differences in rural and urban areas affected the level of Vitamin D in women with single nucleotide polymorphism in north sumatera. Asian J Clin Nutr. 2017;9(2):57-63. https://doi.org/10.3923/ajcn.2017.57.63 DOI: https://doi.org/10.3923/ajcn.2017.57.63

Rashedi J, Asgharzadeh M, Moaddab SR, Sahebi L, Khalili M, Mazani M, et al. Vitamin D receptor gene polymorphism and Vitamin D plasma concentration: Correlation with susceptibility to tuberculosis. Adv Pharm Bull. 2014;4(Suppl 2):607-11. https://doi.org/10.5681/apb.2014.089 PMid:25671196

Sun YP, Cai S. Vitamin D receptor FokI gene polymorphism and tuberculosis susceptibility: A meta-analysis. Genet Mol Res. 2015;14(2):6156-63. https://doi.org/10.4238/2015.June.9.1 PMid:26125816 DOI: https://doi.org/10.4238/2015.June.9.1

Zhao ZZ, Zhang TZ, Gao YM, Feng FM. Meta-analysis of relationship of Vitamin D receptor gene polymorphism and tuberculosis susceptibility. Zhonghua Jie He He Hu Xi Za Zhi. 2009;32(10):748-51. PMid:20079241

Wu YJ, Yang X, Wang XX, Qiu MT, You YZ, Zhang ZX, et al. Association of Vitamin D receptor BsmI gene polymorphism with risk of tuberculosis: A meta-analysis of 15 studies. PLoS One. 2013;8(6):e66944. https://doi.org/10.1371/journal.pone.0066944 PMid:23825591 DOI: https://doi.org/10.1371/journal.pone.0066944

Huang L, Liu C, Liao G, Yang X, Tang X, Chen J. Vitamin D receptor gene foki polymorphism contributes to increasing the risk of tuberculosis: An update meta-analysis. Medicine (Baltimore). 2015;94(51):e2256. https://doi.org/10.1097/MD.0000000000002256 PMid:26705207 DOI: https://doi.org/10.1097/MD.0000000000002256

Areeshi MY, Mandal RK, Wahid M, Dar SA, Jawed A, Lohani M, et al. Vitamin D receptor apai (rs7975232) polymorphism confers decreased risk of pulmonary tuberculosis in overall and african population, but not in asians: Evidence from a meta-analysis. Ann Clin Lab Sci. 2017;47(5):628-37. PMid:29066494

Antony C, Mehto S, Tiwari BK, Singh Y, Natarajan K. Regulation of L-type voltage gated calcium channel CACNA1S in macrophages upon Mycobacterium tuberculosis infection. PLoS One. 2015;10(4):e0124263. https://doi.org/10.1371/journal.pone.0124263 PMid:25915405 DOI: https://doi.org/10.1371/journal.pone.0124263

Hoque MR, Muttalib MA, Chakraborty PK, Ahmed SS, Laila TR, Islam MM, et al. Serum calcium level among smear positive pulmonary tuberculosis patients in Bangladesh. Mymensingh Med J. 2013;22(3):427-31. PMid:23982528

Rohini K, Bhat S, Srikumar PS, Kumar AM. Assessment of serum calcium and phosphorus in pulmonary tuberculosis patients before, during and after chemotherapy. Indian J Clin Biochem. 2014;29(3):377-81. https://doi.org/10.1007/s12291-013-0383-3 PMid:24966490 DOI: https://doi.org/10.1007/s12291-013-0383-3

Aibana O, Franke MF, Huang CC, Galea JT, Calderon R, Zhang Z, et al. Impact of Vitamin A and carotenoids on the risk of tuberculosis progression. Clin Infect Dis. 2017;65(6):900-9. https://doi.org/10.1093/cid/cix476 PMid:28531276 DOI: https://doi.org/10.1093/cid/cix476

Qrafli M, El Kari K, Aguenaou H, Bourkadi JE, Sadki K, El Mzibri M. Low plasma Vitamin A concentration is associated with tuberculosis in Moroccan population: A preliminary case control study. BMC Res Notes. 2017;10(1):421. DOI: https://doi.org/10.1186/s13104-017-2737-z

World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and its Intervention. Geneva: Health Communications Australia Pvt. Limited, World Health Organization; 2000.

Holick MF. Optimal Vitamin D status for the prevention and treatment of osteoporosis. Drugs Aging. 2007;24(12):1017-29. https://doi.org/10.2165/00002512-200724120-00005 PMid:18020534 DOI: https://doi.org/10.2165/00002512-200724120-00005

Sari DK, Tala ZZ, Lestari S, Hutagalung SV, Ganie RA. Body mass index but not 25(OH)D serum is associated with bone mineral density among indonesian women in North Sumatera: A cross sectional study. Asian J Clin Nutr. 2017;9(1):37-43. DOI: https://doi.org/10.3923/ajcn.2017.37.43

Sari DK, Mega JY, Harahap J. Nutrition status related to clinical improvement in AFB-positive pulmonary tuberculosis patients in primary health centres in Medan, Indonesia. Open Access Maced J Med Sci. 2019;7(10):1621-7. https://doi.org/10.3889/oamjms.2019.338 PMid:31210811 DOI: https://doi.org/10.3889/oamjms.2019.338

Holick MF. The Vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153-65. https://doi.org/10.1007/s11154-017-9424-1 PMid:28516265 DOI: https://doi.org/10.1007/s11154-017-9424-1

Holick MF. The death D-fying Vitamin. Mayo Clin Proc. 2018;93(6):679-81. https://doi.org/10.1016/j.mayocp.2018.04.014 PMid:29866279 DOI: https://doi.org/10.1016/j.mayocp.2018.04.014

Grober U, Spitz J, Reichrath J, Kisters K, Holick MF. Vitamin D: Update 2013: From rickets prophylaxis to general preventive healthcare. Dermatoendocrinol. 2013;5(3):331-47. https://doi.org/10.4161/derm.26738 PMid:24516687 DOI: https://doi.org/10.4161/derm.26738

Harinarayan CV, Holick MF, Prasad UV, Vani PS, Himabindu G. Vitamin D status and sun exposure in India. Dermatoendocrinol. 2013;5(1):130-41. https://doi.org/10.4161/derm.23873 PMid:24494046 DOI: https://doi.org/10.4161/derm.23873

Holick MF. Evidence-based D-bate on health benefits of Vitamin D revisited. Dermatoendocrinol. 2012;4(2):183-90. https://doi.org/10.4161/derm.20015 PMid:22928075 DOI: https://doi.org/10.4161/derm.20015

Holick MF. The influence of Vitamin D on bone health across the life cycle. J Nutr. 2005;135(11):2726S-7. https://doi.org/10.1093/jn/135.11.2726S PMid:16251638 DOI: https://doi.org/10.1093/jn/135.11.2726S

Holick MF. Vitamin D: A d-lightful solution for health. J Investig Med. 2011;59(6):872-80. https://doi.org/10.2310/JIM.0b013e318214ea2d PMid:21415774 DOI: https://doi.org/10.2310/JIM.0b013e318214ea2d

McCullough PJ, Lehrer DS. Vitamin D, cod liver oil, sunshine, and phototherapy: Safe, effective and forgotten tools for treating and curing tuberculosis infections a comprehensive review. J Steroid Biochem Mol Biol. 2018;177:21-9. https://doi.org/10.1016/j.jsbmb.2017.07.027 PMid:28756294 DOI: https://doi.org/10.1016/j.jsbmb.2017.07.027

Joo MH, Han MA, Park SM, Shin HH. Vitamin D deficiency among adults with history of pulmonary tuberculosis in korea based on a nationwide survey. Int J Environ Res Public Health. 2017;14(4):399. https://doi.org/10.3390/ijerph14040399 PMid:28394278 DOI: https://doi.org/10.3390/ijerph14040399

Rode AK, Kongsbak M, Hansen MM, Lopez DV, Levring TB, Woetmann A, et al. Vitamin D counteracts Mycobacterium tuberculosis-induced cathelicidin downregulation in dendritic cells and allows Th1 differentiation and IFNgamma secretion. Front Immunol. 2017;8:656. https://doi.org/10.3389/fimmu.2017.00656 PMid:28620394 DOI: https://doi.org/10.3389/fimmu.2017.00656

Dou Y, Liang H, Wang Q, Ma A. Vitamin A, Vitamin E and beta-carotene nutritional status and antioxidase level analysis among tuberculosis patients. Wei Sheng Yan Jiu. 2013;42(3):364-8.

Martin SJ, Prince SE. Comparative modulation of levels of oxidative stress in the liver of anti-tuberculosis drug treated wistar rats by Vitamin B12, beta-carotene, and spirulina fusiformis: Role of NF-kappaB, iNOS, IL-6, and IL-10. J Cell Biochem. 2017;118(11):3825-33. https://doi.org/10.1002/jcb.26032 PMid:28387444 DOI: https://doi.org/10.1002/jcb.26032

Gupta A, Das PN, Bouzeyen R, Karmakar SP, Singh R, Bairagi N, et al. Restoration of cytosolic calcium inhibits Mycobacterium tuberculosis intracellular growth: Theoretical evidence and experimental observation. J Theor Biol. 2019;472:110-23. DOI: https://doi.org/10.1016/j.jtbi.2019.04.017

Song L, Cui R, Yang Y, Wu X. Role of calcium channels in cellular antituberculosis effects: Potential of voltage-gated calcium-channel blockers in tuberculosis therapy. J Microbiol Immunol Infect. 2015;48(5):471-6. DOI: https://doi.org/10.1016/j.jmii.2014.08.026

Alzugaray AE. Metabolism of calcium and principles of calcium therapy in pulmonary tuberculosis. Rev Asoc Med Argent. 1954;68(779-780):394-7.

Andosca JB, Foley JA. Calcium ribonate and Vitamin C (Nu 240-10) in the treatment of tuberculosis. Dis Chest. 1948;14(1):107-14. DOI: https://doi.org/10.1378/chest.14.1.107

Downloads

Published

2022-03-17

How to Cite

1.
Sari DK, Dharmajaya R, Sari MI, Masyithah D. Vitamin D Receptor Gene Polymorphism Affecting Vitamin D and Beta Carotene Deficiency in Tuberculosis Patients. Open Access Maced J Med Sci [Internet]. 2022 Mar. 17 [cited 2024 Nov. 21];10(T7):30-7. Available from: https://oamjms.eu/index.php/mjms/article/view/9284