The Benefits of High-Resistant Starch and Beta-Carotene Snack in Ameliorating Atherogenic Index and Inflammation in Obesity

Authors

  • Sunarti Sunarti Department of Biochemistry
  • Dianandha Septiana Rubi Department of Biochemistry, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Abrory Agus Cahya Pramana Department of Biochemistry, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Emy Huriyati Department of Health and Nutrition, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Umar Santoso Center of Food and Nutrition Study, Universitas Gadjah Mada, Yogyakarta, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9302

Keywords:

Atherogenic index, Beta-Carotene, Inflammation, Obesity, Resistant star

Abstract

BACKGROUND: In obesity, lipid abnormalities may be related to the higher risk of cardiovascular diseases associated with increased oxidation of lipids and inflammation. Resistant starch and beta-carotene reduce atherosclerosis risk related to low-grade inflammation and oxidative stress in obesity.

AIM: This study aimed to evaluate the benefits of a snack containing high-resistant starch and beta-carotene in improving the atherogenic index of plasma (AIP) and inflammation in obesity.

METHODS: This study used a single-blinded and randomized controlled design. Fifty subjects received 42 g of snacks per day for 6 weeks, either tested snacks or standard snacks. Anthropometry, body composition, lipid profile, tumor necrosis factor-alpha (TNF-α), and oxidized low-density lipoprotein (ox-LDL) were measured before and after intervention.

RESULTS: The snack containing high-resistant starch and beta-carotene significantly decreased LDL, AIP, and TNF-α (p < 0.05). Positive correlations were found between AIP and triglycerides in both snacks (p < 0.05), LDL or TNF-α in the standard snack (p < 0.05), and TNF-α and ox-LDL in both snacks (p < 0.05). A negative correlation was found between AIP and HDL in both snacks (p < 0.05).

CONCLUSIONS: A snack containing high-resistant starch and beta-carotene reduced AIP and inflammation by preventing LDL oxidation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Fanghänel-Salmón G, Gutiérrez-Salmeán G, Samaniego V, Meaney A, Sánchez-Reyes L, Navarrete U, et al. Obesity phenotypes in urban middle-class cohorts; the PRITLindavista merging evidence in Mexico: The OPUS PRIME study. Nutr Hosp. 2015;32(1):182-8. https://doi.org/10.3305/nh.2015.32.1.8646

Martirosyan DM, Miroshnichenko LA, Kulakova SN, Pogojeva AV, Zoloedov VI. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis. 2007;6:1. https://doi.org/10.1186/1476-511X-6-1 PMid:17207282 DOI: https://doi.org/10.1186/1476-511X-6-1

Brehm A, Pfeiler G, Pacini G, Vierhapper H, Roden M. Relationship between serum lipoprotein ratios and insulin resistance in obesity. Clin Chem. 2004;50(12):2316-22. https://doi.org/10.1373/clinchem.2004.037556 PMid:15459091 DOI: https://doi.org/10.1373/clinchem.2004.037556

Dobiásová M, Frohlich J. The plasma parameter log (TG/HDLC) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL)). Clin Biochem. 2001;34(7):583-8. https://doi.org/10.1016/s0009-9120(01)00263-6 PMid:11738396 DOI: https://doi.org/10.1016/S0009-9120(01)00263-6

Lafta MA. A comparative study for some atherogenic indices in sera of myocardial infarction, ischemic heart disease patients and control. J Nat Sci Res. 2014;4(8):96-102.

Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients. 2013;5(4):1218-40. https://doi.org/10.3390/nu5041218 PMid:23584084 DOI: https://doi.org/10.3390/nu5041218

Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesityrelated inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflamm. 2013;2013:139239. https://doi.org/10.1155/2013/139239 PMid:24455420 DOI: https://doi.org/10.1155/2013/139239

Kojta I, Chacińska M, Błachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients. 2020;12(5):1305. https://doi.org/10.3390/nu12051305 PMid:32375231 DOI: https://doi.org/10.3390/nu12051305

Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism. 2019;92:71-81. https://doi.org/10.1016/j.metabol.2018.11.005 PMid:30447223 DOI: https://doi.org/10.1016/j.metabol.2018.11.005

Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, et al. Oxidative stress in obesity: A critical component in human diseases. Int J Mol Sci. 2014;16(1):378-400. https://doi.org/10.3390/ijms16010378 PMid:25548896 DOI: https://doi.org/10.3390/ijms16010378

Viuda-Martos M, López-Marcos MC, Fernández-López J, Sendra E, López-Vargas JH, Pérez-Álvarez JA. Role of fiber in cardiovascular diseases: A review. Compr Rev Food Sci Food Saf. 2010;9(2):240-58. https://doi.org/10.1111/j.1541-4337.2009.00102.x DOI: https://doi.org/10.1111/j.1541-4337.2009.00102.x

Kawata A, Murakami Y, Suzuki S, Fujisawa S. Antiinflammatory activity of beta carotene, lycopene and tri-nbutylborane, a scavenger of reactive oxygen species. In Vivo. 2018;32(2):255-64. https://doi.org/10.21873/invivo.11232 PMid:29475907 DOI: https://doi.org/10.21873/invivo.11232

Bai SK, Lee SJ, Na HJ, Ha KS, Han JA, Lee H, et al. Beta-carotene inhibits inflammatory gene expression in lipopolysaccharidestimulated macrophages by suppressing redox-based NF-kappaB activation. Exp Mol Med. 2005;37(4):323-34. https://doi.org/10.1038/emm.2005.42 PMid:16155409 DOI: https://doi.org/10.1038/emm.2005.42

Fuentes-Zaragoza E, Riquelme-Navarrete MJ, Sánchez-Zapata E, Pérez-Álvarez JA. Resistant starch as functional ingredient: A review. Food Res Int. 2010;43(4):931-42. https://doi.org/10.1016/j.foodres.2010.02.004 DOI: https://doi.org/10.1016/j.foodres.2010.02.004

Lockyer S, Nugent AP. Health effects of resistant starch. Nutr Bull. 2017;42(1):10-41. https://doi.org/10.1111/nbu.12244 DOI: https://doi.org/10.1111/nbu.12244

Soliman GA. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients. 2019;11(5):1155. https://doi.org/10.3390/nu11051155 PMid:31126110 DOI: https://doi.org/10.3390/nu11051155

Sunarti S, Santoso U, Pramana AA, Huriyati E, Rubi DS. High fiber and beta carotene from sweet potatoes and pumpkin improve insulin resistance by inhibition of sterol regulatory binding protein 1c in liver of hypertriglyceridemic rats. Open Access Maced J Med Sci. 2020;8(A):898-903. https://doi.org/10.3889/oamjms.2020.5354 DOI: https://doi.org/10.3889/oamjms.2020.5354

Bo MS, Cheah WL, Lwin S, Nwe TM, Win TT, Aung M. Understanding the relationship between atherogenic index of plasma and cardiovascular disease risk factors among staff of a University in Malaysia. J Nutr Metab. 2018;2018:7027624. https://doi.org/10.1155/2018/7027624 DOI: https://doi.org/10.1155/2018/7027624

Eashwarage IS, Herath T, Gunathilake KG. Dietary fibre, resistant starch and in-vitro starch digestibility of selected eleven commonly consumed legumes (mung bean, cowpea, soybean and horse gram) in Sri Lanka. Res J Cheml Sci. 2017;7(2):1-7.

Zhu X, Yu L, Zhou H, Ma Q, Zhou X, Lei T, et al. Atherogenic index of plasma is a novel and better biomarker associated with obesity: A population-based cross-sectional study in China. Lipids Health Dis. 2018;17(1):37. https://doi.org/10.1186/s12944-018-0686-8 PMid:29506577 DOI: https://doi.org/10.1186/s12944-018-0686-8

Maiolino G, Rossitto G, Caielli P, Bisogni V, Rossi, GP, Calò LA. The role of oxidized low-density lipoproteins in atherosclerosis: The myths and the facts. Mediators Inflamm. 2013;2013:714653. https://doi.org/10.1155/2013/714653 PMid:24222937 DOI: https://doi.org/10.1155/2013/714653

Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: Biochemistry, pharmacology and treatment. Br J Pharmacol. 2017;174(11):1290-324. https://doi.org/10.1111/bph.13625 PMid:2763871 DOI: https://doi.org/10.1111/bph.13625

D’Odorico A, Martines D, Kiechl S, Egger G, Oberhollenzer F, Bonvicini P, et al. High plasma levels of alpha-and beta-carotene are associated with a lower risk of atherosclerosis: Results from the Bruneck study. Atherosclerosis. 2000;153(1):231-9. https://doi.org/10.1016/s0021-9150(00)00403-2 PMid:11058719 DOI: https://doi.org/10.1016/S0021-9150(00)00403-2

Toti E, Chen CO, Palmery M, Valencia DV, Peluso I. Nonprovitamin A and provitamin a carotenoids as immunomodulators: Recommended dietary allowance, therapeutic index, or personalized nutrition? Oxid Med Cell Longev. 2018;2018:4637861. https://doi.org/10.1155/2018/4637861 PMid:29861829 DOI: https://doi.org/10.1155/2018/4637861

El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys. 2004;430(1):37-48. https://doi.org/10.1016/j.abb.2004.03.007 PMid:15325910 DOI: https://doi.org/10.1016/j.abb.2004.03.007

Lempesis IG, Van Meijel R, Manolopoulos KN, Goossens GH. Oxygenation of adipose tissue: A human perspective. Acta Physiol (Oxf). 2020;228(1):e13298. https://doi.org/10.1111/apha.13298 PMid:31077538 DOI: https://doi.org/10.1111/apha.13298

Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 2011;124(1):67-76. https://doi.org/10.1161/CIRCULATIONAHA.111.027813 PMid:21670228 DOI: https://doi.org/10.1161/CIRCULATIONAHA.111.027813

Goossens GH. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function. Obes Facts. 2017;10(3):207-15. https://doi.org/10.1159/000471488 PMid:28564650 DOI: https://doi.org/10.1159/000471488

Santiago-Fernández C, Martin-Reyes F, Tome M, Ocaña-Wilhelmi L, Rivas-Becerra J, Tatzber F, et al. Oxidized LDL modify the human adipocyte phenotype to an insulin resistant, proinflamatory and proapoptotic profile. Biomolecules. 2020;10(4):534. https://doi.org/10.3390/biom10040534 PMid:32244787 DOI: https://doi.org/10.3390/biom10040534

Mounien L, Tourniaire F, Landrier JF. Anti-obesity effect of carotenoids: Direct impact on adipose tissue and adipose tissuedriven indirect effects. Nutrients. 2019;11(7):1562. https://doi.org/10.3390/nu11071562 PMid:31373317 DOI: https://doi.org/10.3390/nu11071562

Zhu L, Giunzioni I, Tavori H, Covarrubias R, Ding L, Zhang Y, et al. Loss of macrophage low-density lipoprotein receptorrelated protein 1 confers resistance to the antiatherogenic effects of tumor necrosis factor-α inhibition. Arterioscler Thromb Vasc Biol. 2016;36(8):1483-95. https://doi.org/10.1161/ATVBAHA.116.307736 PMid:27365402 DOI: https://doi.org/10.1161/ATVBAHA.116.307736

Downloads

Published

2022-07-18

How to Cite

1.
Sunarti S, Rubi DS, Pramana AAC, Huriyati E, Santoso U. The Benefits of High-Resistant Starch and Beta-Carotene Snack in Ameliorating Atherogenic Index and Inflammation in Obesity. Open Access Maced J Med Sci [Internet]. 2022 Jul. 18 [cited 2024 Apr. 25];10(B):1767-73. Available from: https://oamjms.eu/index.php/mjms/article/view/9302

Most read articles by the same author(s)