Effect of Diode Laser and Remineralizing Agents on Microstructure and Surface Microhardness of Therapeutic Gamma-Irradiated Primary Teeth Enamel

Authors

  • Rasha Atef Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt https://orcid.org/0000-0002-4510-8731
  • Ahmed Abbas Zaky Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt
  • Nevin Waly Department of Pediatric Dentistry, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
  • Dalia El Rouby Department of Oral Pathology, Faculty of Oral and Dental medicine, Cairo University, Cairo, Egypt
  • Naglaa Ezzeldin Department of Pediatric Dentistry, Faculty of Dentistry, October University for Modern Sciences and Arts, 6th of October, Egypt

DOI:

https://doi.org/10.3889/oamjms.2022.9333

Keywords:

Radiation caries, Remineralization, Nano-hydroxyapatite, Fluoride varnish, Diode laser

Abstract

BACKGROUND: Radiation caries is a serious complication to head and neck cancer (HNC) radiotherapy, for which the primary teeth are more susceptible to be affected. Preventive protocols are recommended to enhance dental structure resistance against the direct effects of radiotherapy.

AIM: The aim of the study is to evaluate the effect of diode laser and two types of remineralizing agents on the microhardness of the primary teeth enamel and examine microstructural alterations.

METHODS: Twenty primary molars were sectioned into two halves in a mesiodistal direction, to obtain 40 specimens, which were then randomly allocated into five groups. Group 1 (Control Negative) n = 5 was not subjected to any treatment or radiation. Group 2 (Control positive) n = 5 was gamma irradiated with a dose of 60 Gray. For Groups 3, 4, and 5, specimens were divided into two subgroups: A and B (n = 5/subgroup). Subgroups A were gamma irradiated, then exposed to different surface treatments: 3A:10% nano-hydroxyapatite (nHA) paste, 4A: 5% sodium fluoride varnish (FV), and 5A: diode laser 980 nm. Subgroups B were exposed to surface treatments (3B: 10% nHA, 4 B: 5% FV, and 5B: diode laser 980 nm), then gamma irradiated. Surface micromorphology and microhardness were examined using environmental scanning electron microscope (ESEM), and Vickers microhardness tester, respectively.

RESULTS: Group 2 (G) specimens possessed the lowest mean microhardness, while nHA-G (3B), G-Fl (4A), and L-G (5B) had significantly higher values. ESEM analysis showed an alteration in Group G and the obliteration of enamel micropores with remineralizing agents. The melting and fusion of enamel in laser subgroups were also observed.

CONCLUSIONS: The findings indicated that using FV, nHA, or diode laser increased microhardness and maintained the integrity of the enamel microstructure. Therefore, applying preventive strategies should be considered in HNC radiotherapy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Campi LB, Lopes FC, Soares LE, de Queiroz AM, de Oliveira HF, Saquy PC, et al. Effect of radiotherapy on the chemical composition of root dentin. Head Neck 2019;41(1):162-9. https://doi.org/10.1002/hed.25493 PMid:30552849 DOI: https://doi.org/10.1002/hed.25493

Yap LF, Lai SL, Patmanathan SN, Gokulan R, Robinson CM, White JB, et al. HOPX functions as a tumour suppressor in head and neck cancer. Sci Rep. 2016;6:38758. https://doi.org/10.1038/srep38758 PMid:27934959 DOI: https://doi.org/10.1038/srep38758

Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239-53. https://doi.org/10.1038/nrc3007 PMid:21430696 DOI: https://doi.org/10.1038/nrc3007

Vissink A, Burlage FR, Spijkervet FK, Jansma J, Coppes RP. Prevention and treatment of the consequences of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003;14(3):213-25. https://doi.org/10.1177/154411130301400306 PMid:12799324 DOI: https://doi.org/10.1177/154411130301400306

Lieshout HF, Bots CP. The effect of radiotherapy on dental hard tissue – A systematic review. Clin Oral Investig. 2014;18(1):17-24. https://doi.org/10.1007/s00784-013-1034-z PMid:23873320 DOI: https://doi.org/10.1007/s00784-013-1034-z

Dobroś K, Hajto-Bryk J, Wróblewska M, Zarzecka J. Radiationinduced caries as the late effect of radiation therapy in the head and neck region. Contemp Oncol (Pozn). 2016;20(4):287-90. https://doi.org/10.5114/wo.2015.54081 PMid:27688724 DOI: https://doi.org/10.5114/wo.2015.54081

Soares CJ, Castro CG, Neiva NA, Soares PV, Santos-Filho PC, Naves LZ, et al. Effect of gamma irradiation on ultimate tensile strength of enamel and dentin. J Dent Res. 2010;89(2):159-64. https://doi.org/10.1177/0022034509351251 PMid:20042736 DOI: https://doi.org/10.1177/0022034509351251

De Siqueira Mellara T, Palma-Dibb RG, de Oliveira HF, Garcia Paula-Silva FW, Nelson-Filho P, da Silva RA, et al. The effect of radiation therapy on the mechanical and morphological properties of the enamel and dentin of deciduous teeth - An in vitro study. Radiat Oncol. 2014;9(1):1-7. https://doi.org/10.1186/1748-717X-9-30 PMid:24450404 DOI: https://doi.org/10.1186/1748-717X-9-30

Dental Management of Pediatric Patients Receiving Immunosuppressive Therapy and/or Radiation Therapy. Pediatr Dent. 2018;40(6):392-400.

Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater. 2009;4(3):34104. https://doi.org/10.1088/1748-6041/4/3/034104 PMid:19498220 DOI: https://doi.org/10.1088/1748-6041/4/3/034104

Haghgoo R, Ahmadvand M, Moshaverinia S. Remineralizing effect of topical NovaMin and nanohydroxyapatite on caries-like lesions in primary teeth. J Contemp Dent Pract. 2016;17(8):645-9. https://doi.org/10.5005/jp-journals-10024-1905 PMid:27659081 DOI: https://doi.org/10.5005/jp-journals-10024-1905

Yussif NM, Saafan MA, Mehani SS. Impact of welding the dental enamel walls of the fissure system using semiconductor laser: In-vitro study. Dentistry. 2017;7(8):3-7.

de Souza MR, Watanabe IS, Azevedo LH, Tanji EY. Morphological alterations of the surfaces of enamel and dentin of deciduous teeth irradiated with Nd: YAG, C0(2)and diode lasers. Int J Morphol. 2009;27(2):441-6. DOI: https://doi.org/10.4067/S0717-95022009000200021

Duruk G, Acar B, Temelli Ö. Effect of different doses of radiation on morphogical, mechanical and chemical properties of primary and permanent teeth – An in vitro study. BMC Oral Health. 2020;20(1):242. https://doi.org/10.1186/s12903-020-01222-3 PMid:32873280 DOI: https://doi.org/10.1186/s12903-020-01222-3

Abd S, Halim E, Raafat R, Elganzory A. Esem analysis of enamel surface morphology etched with er,cr: ysgg laser and phosphoric acid: In vitro study. Egypt Dent J. 2017;63(1):941-7. DOI: https://doi.org/10.21608/edj.2017.75250

Moharam LM, Sadony DM, Nagi SM. Evaluation of diode laser application on chemical analysis and surface microhardness of white spots enamel lesions with two remineralizing agents. J Clin Exp Dent. 2020;12(3):e271-6. https://doi.org/10.4317/jced.56490 PMid:32190198 DOI: https://doi.org/10.4317/jced.56490

Bahrololoomi Z, Ardakani FF, Sorouri M. In vitro comparison of the effects of diode laser and CO2 laser on topical fluoride uptake in primary teeth. J Dent (Tehran). 2015;12(8):585-91. PMid:27123018

Abdel-Hamid DM. Effect of different remineralizing agents on the microhardness of therapeutic gamma irradiated human dentin. Egypt Dent J. 2015;59(3):2367-76.

Kim HN, Kim JB, Jeong SH. Remineralization effects when using different methods to apply fluoride varnish in vitro. J Dent Sci. 2018;13(4):360-6. https://doi.org/10.1016/j.jds.2018.07.004 PMid:30895146 DOI: https://doi.org/10.1016/j.jds.2018.07.004

Zadeh Moghadam NC, Seraj B, Chiniforush N, Ghadimi S. Effects of laser and fluoride on the prevention of enamel demineralization: An in vitro study. J Lasers Med Sci. 2018;9(3):177-82. https://doi.org/10.15171/jlms.2018.32 PMid:30809328 DOI: https://doi.org/10.15171/jlms.2018.32

Bakr MA. Microhardness and ultrastructure of demineralized human enamel after diode laser (980 nm) and fluoride surface treatment. Brazilian Arch Biol Technol. 2019;62. DOI: https://doi.org/10.1590/1678-4324-2019180133

Pavithra R, Sugavanesh P, Lalithambigai G, Arunkulandaivelu T, Kumar PD. Comparison of microhardness and micromorphology of enamel following a fissurotomy procedure using three different laser systems: An in vitro study. J Dent Lasers. 2016;10(1):10-5. DOI: https://doi.org/10.4103/0976-2868.184601

Mohamed MA, Moharrum HS. Combined effect of fluoride gel and diode laser 980 nm on root caries inhibition. Egypt Dent J. 2017;63(1):491-8. https://doi.org/10.21608/EDJ.2017.74789 DOI: https://doi.org/10.21608/edj.2017.74789

Lima RB, Meireles SS, Pontual ML, Andrade AK, Duarte RM. The impact of radiotherapy in the in vitro remineralization of demineralized enamel. Pesqui Bras Odontopediatria Clin Integr. 2018;19. DOI: https://doi.org/10.4034/PBOCI.2019.191.18

Cooper JS, Zhang Q, Pajak TF, Forastiere AA, Jacobs J, Saxman SB, et al. Long-term follow-up of the RTOG 9501/intergroup Phase III trial: Postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 2012;84(5):1198-205. https://doi.org/10.1016/j.ijrobp.2012.05.008 PMid:22749632 DOI: https://doi.org/10.1016/j.ijrobp.2012.05.008

Gonçalves LM, Palma-Dibb RG, Paula-Silva FW, De Oliveira HF, Nelson-Filho P, Da Silva LA, et al. Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth. J Dent. 2014;42(8):986-92. https://doi.org/10.1016/j.jdent.2014.05.011 PMid:24887361 DOI: https://doi.org/10.1016/j.jdent.2014.05.011

da Cunha SR, Ramos PA, Haddad CM, da Silva JL, Fregnani ER, Aranha AC. Effects of different radiation doses on the bond strengths of two different adhesive systems to enamel and dentin. J Adhes Dent. 2016;18(2):151-6. https://doi.org/10.3290/j.jad.a35841 PMid:27022644

Marangoni-Lopes L, Rodrigues LP, Mendonça RH, Nobre-Dos Santos M. Radiotherapy changes salivary properties and impacts quality of life of children with Hodgkin disease. Arch Oral Biol. 2016;72:99-105. https://doi.org/10.1016/j.archoralbio.2016.08.023 PMid:27566884 DOI: https://doi.org/10.1016/j.archoralbio.2016.08.023

Klarić Sever E, Tarle A, Soče M, Grego T. Direct radiotherapyinduced effects on dental hard tissue in combination with bleaching procedure. Front Dent Med. 2021;2:1-13. https://doi.org/10.3389/fdmed.2021.714400 DOI: https://doi.org/10.3389/fdmed.2021.714400

Rodrigues RB, Soares CJ, Cézar P, Junior S, Lara VC, Aranachavez VE, et al. Influence of radiotherapy on the dentin properties and bond strength. Clin Oral Investig. 2018;22(2):875-83. https://doi.org/10.1007/s00784-017-2165-4 PMid:28776096 DOI: https://doi.org/10.1007/s00784-017-2165-4

Oliveira MA, Torres CP, Gomes-Silva JM, Chinelatti MA, Menezes FC, Palma-Dibb RG, et al. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microsc Res Tech. 2010;73(5):572-7. https://doi.org/10.1002/jemt.20796 PMid:19937744 DOI: https://doi.org/10.1002/jemt.20796

Anneroth G, Holm LE, Karlsson G. The effect of radiation on teeth. A clinical, histologic and microradiographic study. Int J Oral Surg. 1985;14(3):269-74. https://doi.org/10.1016/s0300-9785(85)80038-7 PMid:3926671 DOI: https://doi.org/10.1016/S0300-9785(85)80038-7

Fränzel W, Gerlach R, Hein HJ, Schaller HG. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue. Z Med Phys. 2006;16(2):148-54. https://doi.org/10.1078/0939-3889-00307 PMid:16875028 DOI: https://doi.org/10.1078/0939-3889-00307

Wu G, Liu X, Hou Y. Analysis of the effect of CPP-ACP tooth mousse on enamel remineralization by circularly polarized images. Angle Orthod. 2010;80(5):933-8. https://doi.org/10.2319/110509-624.1 PMid:20578866 DOI: https://doi.org/10.2319/110509-624.1

Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nanohydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann Stomatol (Roma). 2014;5(3):108-14. PMid:25506416 DOI: https://doi.org/10.11138/ads/2014.5.3.108

Ebadifar A, Nomani M, Fatemi SA. Effect of nano-hydroxyapatite toothpaste on microhardness of artificial carious lesions created on extracted teeth. J Dent Res Dent Clin Dent Prospects. 2017;11(1):14-7. http://doi.org/10.15171/joddd.2017.003 PMid:28413590 DOI: https://doi.org/10.15171/joddd.2017.003

Roveri N, Battistella E, Bianchi CL, Foltran I, Foresti E, Iafisco M, et al. Surface enamel remineralization: Biomimetic apatite nanocrystals and fluoride ions different effects. J Nanomater. 2009;2009:746383. https://doi.org/10.1155/2009/746383 DOI: https://doi.org/10.1155/2009/746383

Marangoni-Lopes L, Rovai-Pavan G, Steiner-Oliveira C, Nobre-dos-Santos M. Radiotherapy reduces microhardness and mineral and organic composition, and changes the morphology of primary teeth: An in vitro study. Caries Res. 2019;53(3):296-304. https://doi.org/10.1159/000493099 PMid:30317232 DOI: https://doi.org/10.1159/000493099

Weyant RI, Tracy SL, Anselmo T, Beltrán-Aguilar ED, Donly KJ, Frese WA, et al. Topical fluoride for caries prevention. J Am Dent Assoc. 2013;144(11):1279-91. http://doi.org/10.14219/jada.archive.2013.0057 DOI: https://doi.org/10.14219/jada.archive.2013.0057

Dholam KP, Somani PP, Prabhu SD, Ambre SR. Effectiveness of fluoride varnish application as cariostatic and desensitizing agent in irradiated head and neck cancer patients. Int J Dent. 2013;2013:824982. https://doi.org/10.1155/2013/824982 PMid:23843793 DOI: https://doi.org/10.1155/2013/824982

Shihabi S, AlNesser S, Comisi JC. Comparative remineralization efficacy of topical novamin and fluoride on incipient enamel lesions in primary teeth: Scanning electron microscope and vickers microhardness evaluation. Eur J Dent. 2021;15(3):420-4. https://doi.org/10.1055/s-0040-1721311 PMid:33321547 DOI: https://doi.org/10.1055/s-0040-1721311

Romanos G, Nentwig GH. Diode laser (980 nm) in oral and maxillofacial surgical procedures: Clinical observations based on clinical applications. J Clin Laser Med Surg. 1999;17(5):193-7. https://doi.org/10.1089/clm.1999.17.193 PMid:11199822 DOI: https://doi.org/10.1089/clm.1999.17.193

Santaella MR, Braun A, Matson E, Frentzen M. Effect of diode laser and fluoride varnish on initial surface demineralization of primary dentition enamel: An in vitro study. Int J Paediatr Dent. 2004;14(3):199-203. https://doi.org/10.1111/j.1365-263X.2004.00550.x PMid:15139955 DOI: https://doi.org/10.1111/j.1365-263X.2004.00550.x

Magalhães AC, Romanelli AC, Rios D, Comar LP, Navarro RS, Grizzo LT, et al. Effect of a single application of TiF4 and NaF varnishes and solutions combined with Nd: YAG laser irradiation on enamel erosion in vitro. Photomed Laser Surg. 2011;29(8):537-44. https://doi.org/10.1089/pho.2010.2886 PMid:21595551 DOI: https://doi.org/10.1089/pho.2010.2886

Seyedmahmoud R, Wang Y, Thiagarajan G, Gorski J, ReedEdwards R, McGuire J, et al. Oral cancer radiotherapy affects enamel microhardness and associated indentation pattern morphology. Clin Oral Investig. 2018;22(4):1795-1803. https://doi.org/10.1007/s00784-017-2275-z PMid:29151196 DOI: https://doi.org/10.1007/s00784-017-2275-z

Soares CJ, Neiva NA, Soares PB, Dechichi P, Novais VR, Naves LZ, et al. Effects of chlorhexidine and fluoride on irradiated enamel and dentin. J Dent Res. 2011;90(5):659-64. https://doi.org/10.1177/0022034511398272 PMid:21335538 DOI: https://doi.org/10.1177/0022034511398272

Kim MY, Kwon HK, Choi CH, Kim BI. Combined effects of nanohydroxyapatite and NaF on remineralization of early caries lesion. In: Key Engineering Materials. Freienbach, Switzerland: Trans Tech Publications Ltd.; 2007. p. 1347-50. DOI: https://doi.org/10.4028/0-87849-422-7.1347

Juntavee A, Juntavee N, Sinagpulo AN. Nano-hydroxyapatite gel and its effects on remineralization of artificial carious lesions. Int J Dent. 2021;2021:7256056. https://doi.org/10.1155/2021/7256056 PMid:34790238 DOI: https://doi.org/10.1155/2021/7256056

Soltanimehr E, Bahrampour E. Efficacy of diode and CO 2 lasers along with calcium and fluoride-containing compounds for the remineralization of primary teeth. BMC Oral Health. 2019;19(1):121. https://doi.org/10.1186/s12903-019-0813-6 PMid:31217005 DOI: https://doi.org/10.1186/s12903-019-0813-6

Kato IT, Kohara EK, Sarkis JE, Wetter NU. Effects of 960-nm diode laser irradiation on calcium solubility of dental enamel: An in vitro study. Photomed Laser Surg. 2006;24(6):689-93. https://doi.org/10.1089/pho.2006.24.689 PMid:17199467 DOI: https://doi.org/10.1089/pho.2006.24.689

Chuenarrom C, Benjakul P, Daosodsai P. Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin. Mater Res. 2009;12(4): 473-6. https://doi.org/10.1590/S1516-14392009000400016 DOI: https://doi.org/10.1590/S1516-14392009000400016

Downloads

Published

2022-05-05

How to Cite

1.
Atef R, Zaky AA, Waly N, El Rouby D, Ezzeldin N. Effect of Diode Laser and Remineralizing Agents on Microstructure and Surface Microhardness of Therapeutic Gamma-Irradiated Primary Teeth Enamel. Open Access Maced J Med Sci [Internet]. 2022 May 5 [cited 2024 Nov. 21];10(D):243-50. Available from: https://oamjms.eu/index.php/mjms/article/view/9333

Issue

Section

Pedodontics and Preventive Dentistry

Categories

Similar Articles

You may also start an advanced similarity search for this article.