Exposure Time of Silica Dust and the Incidence of Oxidative Stress, Inflammation, and Fibrosis in Rat Lungs

Authors

  • I. Gusti Ngurah Bagus Artana Department of Pulmonology, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
  • I. Gusti Ayu Artini Department of Pharmacology and Therapy, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
  • I. Gusti Kamasan Nyoman Arijana Department of Histology, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
  • Ida Bagus Ngurah Rai Department of Pulmonology, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
  • Agung Wiwiek Indrayani Department of Pharmacology and Therapy, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9381

Keywords:

Fibrosis, Inflammation, Malondialdehyde, Lung, Silica

Abstract

BACKGROUND: Until now, exposure to silica dust is still a health problem worldwide. Silica exposure in the lungs will cause pulmonary fibrosis which is initiated by inflammation. However, the results of several studies regarding the duration of inflammation and fibrosis are still inconsistent. There was a role of oxidative stress in silicosis, but there were also inconsistencies in terms of when oxidative stress occurs in silica exposure.

AIM: This study aimed to study the toxic effects of silica dust exposure by looking at the picture of inflammation and fibrosis and malondialdehyde (MDA) levels in lung tissue during the observation period of 7 days, 14 days, 21 days, and 28 days.

METHODS: This study used a randomized post-test only control group design. The research sample was male Wistar rat (Rattus norvegicus), aged 6–10 weeks, body weight 150–200 g (divided into 5 groups: Control group, day 7 group, group day 14, group day 21, and group day 28). We administered silica suspension through intratracheal injection of 30 mg/rat on 0.5 mL of volume. Examination of MDA level was using the ELISA technique; histopathological examination of the liver used hematoxylin-eosin (HE) staining to determine inflammation and fibrosis. Statistical test using one-way ANOVA or Kruskal–Wallis followed by post hoc test.

RESULTS: The results of our study found that intratracheal silica exposure increased MDA levels on the 7th day, increased the accumulation of collagen from the 14th day, and increased the pulmonary inflammation score on the 14th day (p < 0.05).

CONCLUSIONS: It was concluded that silica exposure caused significant oxidative stress on day 7 as well as significant inflammation and pulmonary fibrosis on day 14.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Dong J, Yu X, Porter DW, Battelli LA, Kashon ML, Ma Q. Common and distinct mechanisms of induced pulmonary fibrosis by particulate and soluble chemical fibrogenic agents. Arch Toxicol. 2016;90(2):385-402. https://doi.org/10.1007/s00204-015-1589-3 PMid:26345256 DOI: https://doi.org/10.1007/s00204-015-1589-3

Chen W, Liu Y, Wang H, Hanizdo E, Sun Y, Su L, et al. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: A cohort study. PLos Med. 2012;9(4):e1001206. https://doi.org/10.1371/journal.pmed.1001206 PMid:22529751 DOI: https://doi.org/10.1371/journal.pmed.1001206

Nelson G. Occupational respiratory diseases in the South African mining industry. Glob Health Action. 2012;6:19520. https://doi.org/10.3402/gha.v6i0.19520 PMid:23364097 DOI: https://doi.org/10.3402/gha.v6i0.19520

Zhang H, Sui JN, Gao L, Guo J. Subcutaneous administration of infliximab-attenuated silica-induced lung fibrosis. Int J Occup Med Environ Health. 2018;31(4):503-15. https://doi.org/10.13075/ijomeh.1896.01037 PMid:29165430 DOI: https://doi.org/10.13075/ijomeh.1896.01037

Huang H, Chen M, Liu F, Wu H, Wang J, Chen J, et al. N-acetylcysteine therapeutically protects against pulmonary fibrosis in a mouse model of silicosis. Biosci Rep. 2019;39(7):BSR20190681. https://doi.org/10.1042/BSR20190681 PMid:31273057 DOI: https://doi.org/10.1042/BSR20190681

Carneiro PJ, Clevelario AL, Padilha GA, Silva JD, Kitoko JZ, Olsen PC, et al. Bosutinib therapy ameliorates lung inflammation and fibrosis in experimental silicosis. Front Physiol. 2017;8:158. https://doi.org/10.3389/fphys.2017.00159 PMid:28360865 DOI: https://doi.org/10.3389/fphys.2017.00159

DeFerrars RM. The Metabollic Fate and Bioactivity of Anthocyanins in Humans (dissertation). East Anglia: University of East Anglia; 2014.

Todd NW, Lucina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair. 2012;5(1):11. https://doi.org/10.1186/1755-1536-5-11 PMid:22824096 DOI: https://doi.org/10.1186/1755-1536-5-11

Gupta RK, Patel AK, Ahah N, Choudhary AK, Jha UK, Yadav UC, et al. Mini review oxydative stress and antioxydants in diseases and cancer. Asia Pac J Cancer Prev. 2014;15(11):4405-9. https://doi.org/10.7314/APJCP.2014.15.11.4405 PMid:24969860 DOI: https://doi.org/10.7314/APJCP.2014.15.11.4405

Cheng H, Xia D, Tang T, Sha Q. Changes of transforming growth factor-β1 and tumor necrosis factor-α in serum in experimental silicotic rat model. J Bengbu Med. 2012;36(4):386-8.

Chen S, Cui G, Peng C, Lavin MF, Sun X, Zhang E, et al. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther. 2018;9(1):110. https://doi.org/10.1186/s13287-018-0846-9 DOI: https://doi.org/10.1186/s13287-018-0846-9

Beamer CA, Seaver BP, Shepherd DM. Aryl hydrocarbon receptor (AhR) regulates silica-induced inflammation but not fibrosis. Toxicol Sci. 2012;126(2):554-68. https://doi.org/10.1093/toxsci/kfs024 PMid:22273745 DOI: https://doi.org/10.1093/toxsci/kfs024

De Melo EB, Oliveira H, Silva JD, Menna-Barreto RF, Takyia CM, Suk JS, et al. Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respir Res. 2018;19(1):104. https://doi.org/10.1186/s12931-018-0802-3 DOI: https://doi.org/10.1186/s12931-018-0802-3

Mi S, Li Z, Yang H, Liu H, Wang JP, Ma YG, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and independent mechanisms. J Immunol. 2011;187(6):3003-14. https://doi.org/10.4049/jimmunol.1004081 PMid:21841134 DOI: https://doi.org/10.4049/jimmunol.1004081

Xiaojun W, Yan L, Hong X, Xianghong Z, Shifeng L, Dingjie X, et al. Acetylated α-tubulin regulated by n-acetyl-seryl-aspartyl-lysyl-proline (ac-sdkp) exerts the antifibrotic effect in rat lung fibrosis induced by silica. Sci Rep. 2016;6:32257. https://doi.org/10.1038/srep32257 DOI: https://doi.org/10.1038/srep32257

Li X, An G, Wang Y, Liang D, Zhu Z, Tian L. Targeted migration of bone marrow mesenchymal stem cells inhibits silica-induced pulmonary fibrosis in rats. Stem Cell Res Ther. 2018;9(1):335. https://doi.org/10.1186/s13287-018-1083-y PMid:30514375 DOI: https://doi.org/10.1186/s13287-018-1083-y

Liu RM. Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015;6:565-77. https://doi.org/10.1016/j.redox.2015.09.009 PMid:26496488 DOI: https://doi.org/10.1016/j.redox.2015.09.009

Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem. 2013;288(2):770-6. https://doi.org/10.1074/jbc.M112.431973 PMid:23204521 DOI: https://doi.org/10.1074/jbc.M112.431973

Astawa IN. Dasar-Dasar Patobiologi Molekuler I: Apoptosis dan Onkogenesis. Edisi Pertama. Surabaya: Airlangga University Press; 2018. p. 103-7.

Verrecchia F, Mauviel A. Transforming growth factor-β and fibrosis. World J Gastroenterol. 2007;13(22):3056-62. https://doi.org/10.3748/wjg.v13.i22.3056 PMid:17589920 DOI: https://doi.org/10.3748/wjg.v13.i22.3056

Hermendy BE, Pawarti DR. The role of transforming growth factor beta (tgf-β) on allergic rhinitis. J THT KL. 2017;10(1):27-36.

Aisyah R, Jatmiko SW. Jalur sinyal tgf-β berperan dalam self renewal, diferensiasi, dan proliferasi stem cell. J Saintika Med. 2019;15(1):50-9. https://doi.org/10.22219/sm.Vol15.SMUMM1.8002 DOI: https://doi.org/10.22219/sm.Vol15.SMUMM1.8002

Rahmasari N, Barliana MI, Amalia R. Artikel review: Cross interaction between wnt and tgf-b signaling on lung cancer with micro Rna as the major regulator. J Farm Klin Indones. 2021;10(1):62-78. https://doi.org/10.15416/ijcp.2021.10.1.62 DOI: https://doi.org/10.15416/ijcp.2021.10.1.62

Downloads

Published

2022-07-21

How to Cite

1.
Artana IGNB, Artini IGA, Arijana IGKN, Rai IBN, Indrayani AW. Exposure Time of Silica Dust and the Incidence of Oxidative Stress, Inflammation, and Fibrosis in Rat Lungs. Open Access Maced J Med Sci [Internet]. 2022 Jul. 21 [cited 2024 Nov. 23];10(A):1378-82. Available from: https://oamjms.eu/index.php/mjms/article/view/9381