The Effects of High Fat Diet on the Liver of the White Rat Model Obesity
DOI:
https://doi.org/10.3889/oamjms.2022.9383Keywords:
Standard diet, High fat diet, Rat galur wistar, SteatosisAbstract
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease with the manifestation of over-accumulation of fat in the liver.
AIM: The purpose of this study was to assess the degree of occurrence of steatosis in rats induced by a standard diet, a high-fat diet, and a modified high-fat diet.
METHODS: This study used 18 white rats of the Wistar strain, divided into three groups, and fed for 9 weeks. Before feeding, all rats were measured their body weight, abdominal circumference, and body length. We measured body weight every week, while body length and waist circumference were measured every 2 weeks. After 9 weeks of diet, all rats were subjected to injection of Ketamine and examined for metabolic markers and histopathological examination of liver organs.
RESULT: There was an increase in body weight of rats in the three groups with the average percentage increase in body weight in the three groups of rats before and after being fed a diet for 9 weeks found in Group 1 29.19% 1 (187−264.40 g), Group 2 by 19.12% (219.33−275 g), and Group 3 24.53% (213.33−275 g). Steatosis in Group 1 was 57.50% of hepatocytes containing macrovesicular fat droplets and called Grade 2 (moderate). In contrast, with a high-fat diet, steatosis occurred around 93.33%−95% of hepatocytes containing macrovesicular fat droplets and called steatosis Grade 3 (severe).
CONCLUSION: The percentage of hepatocytes that had steatosis in obese rats induced by a high-fat diet was more significant than in obese models induced by a standard diet.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Nobili V, Alisi A, Newton KP, Schwimmer JB. Comparison of the phenotype and approach to pediatric vs adult patients with nonalcoholic fatty liver disease. Gastroenterology. 2016;150(8):1798-810. https://doi.org/10.1053/j.gastro.2016.03.009 PMid:27003600 DOI: https://doi.org/10.1053/j.gastro.2016.03.009
Aydos LR, do Amaral LA, de Souza RS, Jacobowski AC, Dos Santos EF, Rodrigues Macedo ML. Nonalcoholic fatty liver disease induced by high-fat diet in C57bl/6 models. Nutrients. 2019;11:3067. https://doi.org/10.3390/nu11123067 PMid:31888190 DOI: https://doi.org/10.3390/nu11123067
Pompili S, Vetuschi A, Gaudio E, Tessitore A, Capelli R, Alesse E, et al. Long-term abuse of a high-carbohydrate diet is as harmful as a high-fat diet for development and progression of liver injury in a mouse model of NAFLD/NASH. Nutrition 2020;75:110782. https://doi.org/10.1016/j.nut.2020.110782 PMid:32268264 DOI: https://doi.org/10.1016/j.nut.2020.110782
Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44(4):865-73. PMid:17006923 DOI: https://doi.org/10.1002/hep.21327
El-Kader SM, El-Den Ashmawy EM. Non-alcoholic fatty liver disease: The diagnosis and management. World J Hepatol. 2015;7(6):846-58. https://doi.org/10.4254/wjh.v7.i6.846 PMid:25937862 DOI: https://doi.org/10.4254/wjh.v7.i6.846
Al Rifai M, Silverman MG, Nasir K, Budoff MJ, Blankstein R, Szklo M, et al. The association of nonalcoholic fatty liver disease, obesity, and metabolic syndrome, with systemic inflammation and subclinical atherosclerosis: The multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2015;239(2):629-33. https://doi.org/10.1016/j.atherosclerosis.2015.02.011 PMid:25683387 DOI: https://doi.org/10.1016/j.atherosclerosis.2015.02.011
Mirmiran P, Amirhamidi Z, Ejtahed HS, Bahadoran Z, Azizi F. Relationship between diet and non-alcoholic fatty liver disease: A review article. Iran J Public Health 2017;46(8):1007. PMid:28894701
Umemoto T, Subramanian S, Ding Y, Goodspeed L, Wang S, Han CY, et al. Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation. J Lipid Res. 2012;53(11):2380-9. https://doi.org/10.1194/jlr.m029264 PMid:22956784 DOI: https://doi.org/10.1194/jlr.M029264
Ma Z, Chu L, Liu H, Wang W, Li J, Yao W, et al. Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats. Sci Rep. 2017;7(1):1-10. https://doi.org/10.1038/srep44819 PMid:28300221 DOI: https://doi.org/10.1038/srep44819
Brunt EM, Wong VW, Nobili V, Da CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015;1:15080. https://doi.org/10.1038/nrdp.2015.80 DOI: https://doi.org/10.1038/nrdp.2015.80
Polyzos SA, Kountouras J, Zavos C, Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab. 2010;12(5):365-83. https://doi.org/10.1111/j.1463-1326.2009.01176.x PMid:20415685 DOI: https://doi.org/10.1111/j.1463-1326.2009.01176.x
Baffy G. Kupffer cells in non-alcoholic fatty liver disease: The emerging view. J Hepatol. 2009;51(1):212-23. https://doi.org/10.1016/j.jhep.2009.03.008 PMid:19447517 DOI: https://doi.org/10.1016/j.jhep.2009.03.008
Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med. 2017;377(21):2063-72. https://doi.org/10.1056/nejmra1503519 PMid:29166236 DOI: https://doi.org/10.1056/NEJMra1503519
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908-22. https://doi.org/10.1038/s41591-018-0104-9 PMid:29967350 DOI: https://doi.org/10.1038/s41591-018-0104-9
Chen X, Acquaah-Mensah GK, Denning KL, Peterson JM, Wang K, Denvir J, Lu Y. High-fat diet induces fibrosis in mice lacking CYP2A5 and PPARα: A new model for steatohepatitis-associated fibrosis. Am J Physiol Gastroint Liver Physiol. 2020;319(5):G626-35. https://doi.org/10.1152/ajpgi.00213.2020 PMid:32877213 DOI: https://doi.org/10.1152/ajpgi.00213.2020
Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313-21. https://doi.org/10.1002/hep.20701 PMid:15915461 DOI: https://doi.org/10.1002/hep.20701
Santhekadur PK, Kumar DP, Sanyal AJ. Preclinical models of non-alcoholic fatty liver disease. J Hepatol. 2018;68(2):230-7. https://doi.org/10.1016/j.jhep.2017.10.031 PMid:29128391 DOI: https://doi.org/10.1016/j.jhep.2017.10.031
Semiane N, Foufelle F, Ferré P, Hainault I, Ameddah S, Mallek A, et al. High carbohydrate diet induces nonalcoholic steato-hepatitis (NASH) in a desert gerbil. Comptes Rendus Biol. 2017;340(1):25-36. https://doi.org/10.1016/j.crvi.2016.09.002 DOI: https://doi.org/10.1016/j.crvi.2016.09.002
Lian CY, Zhai ZZ, Li ZF, Wang L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem Biol Interact. 2020;330:109199. https://doi.org/10.1016/j.cbi.2020.109199 DOI: https://doi.org/10.1016/j.cbi.2020.109199
Picchi MG, Mattos AM, Barbosa MR, Duarte CP, Gandini MD, Portari GV, et al. A high-fat diet as a model of fatty liver disease in rats. Acta Cir Bras. 2011;26(1):25-30 https://doi.org/10.1590/s0102-86502011000800006 PMid:22030811 DOI: https://doi.org/10.1590/S0102-86502011000800006
Xin X, Cai BY, Chen C, Tian HJ, Wang X, Hu YY, et al. High-trans fatty acid and high-sugar diets can cause mice with non-alcoholic steatohepatitis with liver fibrosis and potential pathogenesis. Nutr Metab. 2020;17(1):1-12. https://doi.org/10.1186/s12986-020-00462-y DOI: https://doi.org/10.1186/s12986-020-00462-y
Norris GH, Porter CM, Jiang C, Millar CL, Blesso CN. Dietary sphingomyelin attenuates hepatic steatosis and adipose tissue inflammation in high-fat-diet-induced obese mice. J Nutr Biochem. 2017;40:36-43. https://doi.org/10.1016/j.jnutbio.2016.09.017 PMid:27855315 DOI: https://doi.org/10.1016/j.jnutbio.2016.09.017
Ji G, Zhao X, Leng L, Liu P, Jiang Z, et al. Comparison of dietary control and atorvastatin on high fat diet induced hepatic steatosis and hyperlipidemia in rats. Lipids Health Dis. 2011;10(1):1-10. https://doi.org/10.1186/1476-511x-10-23 PMid:21269482 DOI: https://doi.org/10.1186/1476-511X-10-23
Echeverría F, Valenzuela R, Bustamante A, Álvarez D, Ortiz M, Soto-Alarcon SA, et al. Attenuation of high-fat diet-induced rat liver oxidative stress and steatosis by combined hydroxytyrosol- (HT-) eicosapentaenoic acid supplementation mainly relies on HT. Oxid Med Cell Longev. 2018;2018:5109503. https://doi.org/10.1155/2018/5109503 PMid:30057681 DOI: https://doi.org/10.1155/2018/5109503
de Souza CE, Stolf AM, Dreifuss AA, dos Reis Lívero F, de Oliveira Gomes L, Petiz L, et al. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats. Braz Arch Biol Technol. 2015;58:367-78. https://doi.org/10.1590/s1516-8913201500294 DOI: https://doi.org/10.1590/S1516-8913201500294
Cheng H, Xu N, Zhao W, Su J, Liang M, Xie Z, et al. (‐)‐Epicatechin regulates blood lipids and attenuates hepatic steatosis in rats fed high‐fat diet. Mol Nutr Food Res. 2017;61(11):1700303. https://doi.org/10.1002/mnfr.201700303 PMid:28734036 DOI: https://doi.org/10.1002/mnfr.201700303
Ibrahim SH, Hirsova P, Malhi H, Gores GJ. Animal models of nonalcoholic steatohepatitis: eat, delete, and inflame. Digestive Dis Sci. 2016;61(5):1325-36. https://doi.org/10.1007/s10620-015-3977-1 PMid:26626909 DOI: https://doi.org/10.1007/s10620-015-3977-1
Fouret G, Gaillet S, Lecomte J, Bonafos B, Djohan F, Barea B, et al. 20-Week follow-up of hepatic steatosis installation and liver mitochondrial structure and activity and their interrelation in rats fed a high-fat-high-fructose diet. Br J Nutr. 2018;119(4):368-80. https://doi.org/10.1017/s0007114517003713 PMid:29498345 DOI: https://doi.org/10.1017/S0007114517003713
Downloads
Published
How to Cite
License
Copyright (c) 2022 Rusdiana Rusdiana, Siti Syarifah, Yunita Sari Pane, Sry Suryani Widjaja, Dwi Rita Anggraini (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0
Funding data
-
Universitas Sumatera Utara
Grant numbers 347/UN5.2.3.1/PPM/SPP-TALENTA USU/2021