Comparative Assessment of Various Concentration and Exposure Time of Sodium Dodecyl Sulfate as Decellularization Agents for Small-Vessels Vascular Tissue Engineering
DOI:
https://doi.org/10.3889/oamjms.2022.9396Keywords:
Decellularized vascular, Scaffold, Sodium dodecyl sulfateAbstract
BACKGROUND: Finding the optimum vascular grafts (VG) to replace damaged blood arteries in cardiac surgery is still a work in progress. To be employed, a tissue-engineered VG (TEVG) must have the appropriate biological and mechanical qualities. Decellularized arteries may be a better TEVG than synthetic grafts because of their natural three-dimensional architecture.
AIM: The goal of this study was to compare different concentrations and times of sodium dodecyl sulfate (SDS) to decellularize tissue to find the best decellularized VG.
METHODS: In all decellularized scaffolds, which are 1% SDS-2 weeks group, hematoxylin and eosin and Masson’s trichrome staining exhibited looser collagen networks and fewer nuclei.
RESULTS: The orientation of collagen fibers was identical to native vascular scaffolds. Collagen I deposition was seen in the immunohistochemistry assay. A tensile strength test revealed that the decellularized scaffold (0.5% SDS for 4 weeks and 0.5% SDS for 2 weeks) had exceeded the native arteries’ maximal strength. In comparison to 1% SDS in 4 weeks treated groups, scanning electron microscopy following decellularization revealed no endothelial cells on the inner side of 1% SDS in 2 weeks group with minimum extracellular matrix damage. The endothelial cells remained marginally visible on the inner side of all 0.5% SDS treated groups. The 3-(4,5-dimethylthiazol-2yl)2,5-diphenyltetrazolium bromide test was used to determine the cytotoxicity of the decellularized scaffolds.
CONCLUSION: This study reveals that exposing a bovine mesenteric artery to 1% SDS for 2 weeks is an excellent procedure for extracting the most acellular VG, potentially serving as a biological scaffold for TEVGs.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Sembiring YE, Wijaya RP, Prasmono A, Soebroto H, Sediono OR, et al. Comparation of bovine mesenteric artery with bovine mesenteric vein patency as xenograft in oryctolagus cuniculus carotid artery. Eur J Mol Clin Med. 2021;7(10):3356-61. Available from: https://ejmcm.com/article_7205.html%0Ahttps://ejmcm.com/pdf_7205_b08892c274e3d665f5937be673849950.html [Last accessed on 2022 Jan 22].
Baim DS. Percutaneous treatment of saphenous vein graft disease: The ongoing challenge. J Am Coll Cardiol. 2003;42(8):1370-2. https://doi.org/10.1016/s0735-1097(03)01039-8 PMid:14563576 DOI: https://doi.org/10.1016/S0735-1097(03)01039-8
Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM. Current status of prosthetic bypass grafts: A review. J Biomed Mater Res B Appl Biomater. 2005;74(1):570-81. https://doi.org/10.1002/jbm.b.30247 PMid:15889440 DOI: https://doi.org/10.1002/jbm.b.30247
Kumar VA, Brewster LP, Caves JM, Chaikof EL. Tissue engineering of blood vessels: Functional requirements, progress, and future challenges. Cardiovasc Eng Technol. 2011;2(3):137-48. https://doi.org/10.1007/s13239-011-0049-3 PMid:23181145 DOI: https://doi.org/10.1007/s13239-011-0049-3
Mallis P, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Future perspectives in small-diameter vascular graft engineering. Bioengineering. 2020;7(4):160. https://doi.org/10.3390/bioengineering7040160 PMid:33321830 DOI: https://doi.org/10.3390/bioengineering7040160
Matsuzaki Y, John K, Shoji T, Shinoka T. The evolution of tissue engineered vascular graft technologies: From preclinical trials to advancing patient care. Appl Sci (Switzerland). 2019;9(7):1274. https://doi.org/10.3390/app9071274 PMid:31890320 DOI: https://doi.org/10.3390/app9071274
Lin CH, Hsia K, Ma H, Lee H, Lu JH. In vivo performance of decellularized vascular grafts: A review article. Int J Mol Sci. 2018;19(7):2101. https://doi.org/10.3390/ijms19072101 PMid:30029536 DOI: https://doi.org/10.3390/ijms19072101
Xu S, Lu F, Cheng L, Li C, Zhou X, Wu Y, et al. Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model. Biomed Eng Online. 2017;16(1):55. https://doi.org/10.1186/s12938-017-0344-9 PMid:28494781 DOI: https://doi.org/10.1186/s12938-017-0344-9
Mancuso L, Gualerzi A, Boschetti F, Loy F, Cao G. Decellularized bovine arteries as small-diameter vascular grafts. Biomed Mater (Bristol). 2014;9(4):045011. https://doi.org/10.1088/1748-6041/9/4/045011 PMid:25050540 DOI: https://doi.org/10.1088/1748-6041/9/4/045011
Cheng J, Li J, Cai Z, Xing Y, Wang C, Guo L, et al. Decellularization of porcine carotid arteries using low-concentration sodium dodecyl sulphate. Int J Artif Organs. 2021;44(7):497-508. https://doi.org/10.1177/0391398820975420 PMid:33222583 DOI: https://doi.org/10.1177/0391398820975420
Simsa R, Padma AM, Heher P, Hellström M, Teuschl A, Jenndahl L, et al. Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS One. 2018;13(12):e0209269. https://doi.org/10.1371/journal.pone.0209269 PMid:30557395 DOI: https://doi.org/10.1371/journal.pone.0209269
Morisson B, de Araújo AL, Harduin LO, Porcari EF, Fiorelli RK, Fiorelli SK, et al. A pilot study comparing bovine mesenteric artery and expanded polytetrafluoroethylene grafts as non-autogenous hemodialysis options. J Vasc Bras. 2018;17(4):303-9. https://doi.org/10.1590/1677-5449.007117 PMid:30787948 DOI: https://doi.org/10.1590/1677-5449.007117
Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004;40(1):146-53. https://doi.org/10.1016/j.jvs.2004.03.033 PMid:15218475 DOI: https://doi.org/10.1016/j.jvs.2004.03.033
Cai Z, Gu Y, Cheng J, Li J, Xu Z, Xing Y, et al. Decellularization, cross-linking and heparin immobilization of porcine carotid arteries for tissue engineering vascular grafts. Cell Tissue Bank. 2019;20(4):569-78. https://doi.org/10.1007/s10561-019-09792-5 PMid:31606766 DOI: https://doi.org/10.1007/s10561-019-09792-5
Rodríguez-Rodríguez VE, Quiroga-Garza, A, Rodríguez- Roque CS, Loera-Arias MJ, Soto-Domínguez A, Guzmán-López S. Decellularization of human umbilical arteries. Int J Morphology. 2019;37(1):111-7. https://doi.org/10.4067/S0717-95022019000100111 DOI: https://doi.org/10.4067/S0717-95022019000100111
Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res. 2008;103(2):194-202. https://doi.org/10.1161/CIRCRESAHA.108.178590 PMid:18556575 DOI: https://doi.org/10.1161/CIRCRESAHA.108.178590
Cho SW, Lim SH, Kim IK, Hong YS, Kim SS, Yoo KJ, et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg. 2005;241(3):506-15. https://doi.org/10.1097/01.sla.0000154268.12239.ed PMid:15729075 DOI: https://doi.org/10.1097/01.sla.0000154268.12239.ed
Carrabba M, Madeddu P. Current strategies for the manufacture of small size tissue engineering vascular grafts. Front Bioeng Biotechnol. 2018;6:41. https://doi.org/10.3389/fbioe.2018.00041 PMid:29721495 DOI: https://doi.org/10.3389/fbioe.2018.00041
Xing Q, Yates K, Tahtinen M, Shearier E, Qian Z, Zhao F. Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Eng Part C Methods. 2015;21(1):77-87. https://doi.org/10.1089/ten.tec.2013.0666 PMid:24866751 DOI: https://doi.org/10.1089/ten.tec.2013.0666
Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation. 2003;108(14):1729-34. https://doi.org/10.1161/01.CIR.0000092165.32213.61 PMid:12963635 DOI: https://doi.org/10.1161/01.CIR.0000092165.32213.61
White LJ, Taylor AJ, Faulk DM, Keane TJ, Saldin LT, Reing JE, et al. The impact of detergents on the tissue decellularization process : A ToF-SIMS study. Acta Biomater. 2017;50:207-19. https://doi.org/10.1016/j.actbio.2016.12.033 PMid:27993639 DOI: https://doi.org/10.1016/j.actbio.2016.12.033
Syed O, Walters NJ, Day RM, Kim HW, Knowles JC, et al. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater. 2014;10(12):5043-54. https://doi.org/10.1016/j.actbio.2014.08.024 PMid:25173840 DOI: https://doi.org/10.1016/j.actbio.2014.08.024
Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-specific decellularization methods: Rationale and strategies to achieve regenerative compounds. Int J Mole Sci. 2020;21(15):5447. https://doi.org/10.3390/ijms21155447 PMid:32751654 DOI: https://doi.org/10.3390/ijms21155447
Haugh MG, Murphy CM, O’Brien FJ. Novel freeze-drying methods to produce a range of collagen- glycosaminoglycan scaffolds with tailored mean pore sizes. Tissue Eng Part C Methods. 2010;16(5):887-94. https://doi.org/10.1089/ten.tec.2009.0422 PMid:19903089 DOI: https://doi.org/10.1089/ten.tec.2009.0422
Naderi S, Khayat Zadeh J, Mahdavi Shahri N, Nejad Shahrokh Abady K, Cheravi M, Baharara J, et al. Three-dimensional scaffold from decellularized human gingiva for cell cultures: Glycoconjugates and cell behaviour. Cell J. 2013;15(2):166-75. PMid:23862119
Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: A review. Adv Mater Sci Eng. 2019;2019:1-13. https://doi.org/10.1155/2019/3429527 DOI: https://doi.org/10.1155/2019/3429527
Downloads
Published
How to Cite
License
Copyright (c) 2022 Yan Efrata Sembiring, Rafaela Andira Ledyastatin, Atiya Nurrahmah, Ni Kadek Sulistyaningsih, Jeconia Agrippina Ruth Sinatra, Ito Puruhito, Heri Suroto (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0