Phylogenetic Analysis of HPV16 Isolated from Women with Cervical Cancer Based on L2 Gene Partial Sequence in the Province of Dhi-Qar, Iraq
DOI:
https://doi.org/10.3889/oamjms.2022.9397Keywords:
Phylogenetic, HPV16, Cervical cancer, TCF7L2 gene, NCBI-BLASTAbstract
BACKGROUND: As a causative agent for cervical cancer, the human papillomavirus (HPV) is well-recognized. Being a high-risk form, HPV16 is considered and has been confirmed to be associated specifically with cancer of the cervix.
AIM: HPV16’s phylogenetic tree and genetic diversity are well known worldwide, but in Iraq, documents on HPV16 genetic diversity among women with cervical cancer are lacking; therefore, the present study focused on phylogenetic analysis of HPV16 isolated cervical cancer based on L2 gene partial sequence.
METHODOLOGY: The current study focused on the investigation of HPV16 in women who suffer from cervical cancer. This survey was performed on 93 adult females suffering from cervical cancer during the period from 2017 to 2020. For the molecular study, DNA was extracted and subjected to a polymerase chain reaction (PCR) for detection and amplification of minor capsidprotein L2 gene. Nucleotide sequences of amplified capsid L2 gene were searched using the advanced simple local alignment search tool at GenBank (BLAST).
RESULTS: Genetic screening on HPV16 L2 gene by conventional PCR showed that 60 (65%) of cervical cancer cases infected by HPV16 while only 5 (8%) of the healthy control group are positive for HPV16. The results of the NCBI-BLAST homology sequence showed that genetic variation appeared in four strains from five strains of HPV16.
CONCLUSION: HPV16 from the main causative factors for cervical cancer with high genetic variation.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895):889-99. https://doi.org/10.1016/S0140-6736(13)60022-7 PMid:23618600 DOI: https://doi.org/10.1016/S0140-6736(13)60022-7
Van Der Weele P, Meijer CJ, King AJ. High whole-genome sequence diversity of human papillomavirus type 18 isolates. Viruses. 2018;10(2):68. https://doi.org/10.3390/v10020068 PMid:29414918 DOI: https://doi.org/10.3390/v10020068
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt B):1-441. PMid:23189750
Liu S, Minaguchi T, Lachkar B, Zhang S, Xu C, Tenjimbayashi Y, et al. Separate analysis of human papillomavirus E6 and E7 messenger RNAs to predict cervical neoplasia progression. PLoS One. 2018;13(2):e0193061. https://doi.org/10.1371/journal.pone.0193061 PMid:29466435 DOI: https://doi.org/10.1371/journal.pone.0193061
Basto DL, Vidal JP, Pontes VB, Felix SP, Pinto LC, Soares BM, et al. Genetic diversity of human papillomavirus types 35, 45 and 58 in cervical cancer in Brazil. Arch Virol. 2017;162(9):2855-60. https://doi.org/10.1007/s00705-017-3439-5 PMid:28597068 DOI: https://doi.org/10.1007/s00705-017-3439-5
Wilting SM, Steenbergen RD. Molecular events leading to HPV-induced high-grade neoplasia. Papillomavirus Res. 2016;2:85-8. https://doi.org/10.1016/j.pvr.2016.04.003 PMid:29074190 DOI: https://doi.org/10.1016/j.pvr.2016.04.003
Islam S, Dasgupta H, Roychowdhury A, Bhattacharya R, Mukherjee N, Roy A, et al. Study of association and molecular analysis of human papillomavirus in breast cancer of Indian patients: Clinical and prognostic implication. PLoS One. 2017;12(2):e0172760. https://doi.org/10.1371/journal.pone.0172760 PMid:28245287 DOI: https://doi.org/10.1371/journal.pone.0172760
Islam S, Indra DM, Basu M, Roychowdhury A, Das P, Dasgupta H, et al. Phylogenetic analysis of human papillomavirus 16 variants isolated from Indian breast cancer patients showed difference in genetic diversity with that of cervical cancer isolates. Virus Res. 2018;243:1-9. https://doi.org/10.1016/j.virusres.2017.10.004 PMid:28988982 DOI: https://doi.org/10.1016/j.virusres.2017.10.004
Doorslaer KV, Li Z, Xirasagar S, Maes P, Kaminsky D, Liou D, et al. The papillomavirus episteme: A major update to the papillomavirus sequence database. Nucleic Acids Res. 2017;45(D1):D499-506. https://doi.org/10.1093/nar/gkw879 PMid:28053164 DOI: https://doi.org/10.1093/nar/gkw879
Du J, Nordfors C, Nasman A, Sobkowiak M, Romanitan M, Dalianis T, et al. Human papillomavirus (HPV) 16 E6 variants in tonsillar cancer in comparison to those in cervical cancer in Stockholm, Sweden. PLoS One. 2012;7(4):e36239. https://doi.org/10.1371/journal.pone.0036239 PMid:22558401 DOI: https://doi.org/10.1371/journal.pone.0036239
Fukui A, Matsueda S, Kawano K, Tsuda N, Komatsu N, Shichijo S, et al. Identification of B cell epitopes reactive to human papillomavirus type-16L1- derived peptides. Virol J. 2012;9:199-204. https://doi.org/10.1186/1743-422X-9-199 PMid:22979950 DOI: https://doi.org/10.1186/1743-422X-9-199
Campos SK, Ozbun MA. Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS One. 2009;4(2):e4463. https://doi.org/10.1371/journal.pone.0004463 PMid:19214230 DOI: https://doi.org/10.1371/journal.pone.0004463
Bronnimann MP, Chapman JA, Park CK, Campos SK. A transmembrane domain and GxxxG motifs within L2 are essential for papillomavirus infection. J Virol. 2013;87(1):464-73. https://doi.org/10.1128/JVI.01539-12 PMid:23097431 DOI: https://doi.org/10.1128/JVI.01539-12
Wang JW, Roden RB. L2, the minor capsid protein of papillomavirus. Virology. 2013;445(1-2):175-86. https://doi.org/10.1016/j.virol.2013.04.017 PMid:23689062 DOI: https://doi.org/10.1016/j.virol.2013.04.017
Gambhira R, Jagu S, Karanam B, Gravitt PE, Culp TD, Christensen ND, et al. Protection of rabbits against challenge with rabbit papillomaviruses by immunization with the N terminus of human papillomavirus type 16 minor capsid antigen L2. J Virol. 2007;81(21):11585-92. https://doi.org/10.1128/JVI.01577-07 PMid:17715230 DOI: https://doi.org/10.1128/JVI.01577-07
Ntova CK, Kottaridi C, Chranioti A, Spathis A, Kassanos D, Paraskevaidis E, et al. Genetic variability and phylogeny of high risk HPV type 16, 18, 31, 33 and 45 L1 gene in Greek women. Int J Mol Sci. 2012;13(1):1-17. https://doi.org/10.3390/ijms13010001 PMid:22312235 DOI: https://doi.org/10.3390/ijms13010001
Magray MS, Kumar A, Rawat AK, Srivastava S. Identification of Escherichia coli through analysis of 16S rRNA and 16S-23S rRNA internal transcribed spacer region sequences. Bioinformation. 2011;6(10):370-1. https://doi.org/10.6026/97320630006370 PMid:21904423 DOI: https://doi.org/10.6026/97320630006370
Yue YF, Yang LJ, Chen JY, Pan Y, Zhao YJ. Genetic subtypes and distribution of HPV from 3000 volunteer outpatients in yunnan province. Chinese J Obstet Gynecol Pediatr. 2012;8:467-70.
De Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048-56. https://doi.org/10.1016/S1470-2045(10)70230-8 PMid:20952254 DOI: https://doi.org/10.1016/S1470-2045(10)70230-8
Pity IS, Abdo HH, Goreal AA. Human papillomavirus genotyping among different cervical smears in Duhok/Iraq. Asian Pac J Cancer Prev. 2019;20(7):2059-64. https://doi.org/10.31557/APJCP.2019.20.7.2059 PMid:31350966 DOI: https://doi.org/10.31557/APJCP.2019.20.7.2059
Megia L, Munoz D, Trueba G, Tinoco L, Zipata S. Prevalence of human papilloma virus types in cervical cancerous and precancerous lesions in Ecuadorian women. J Med Virol. 2016;88(1):144-52. https://doi.org/10.1002/jmv.24310 PMid:26113443 DOI: https://doi.org/10.1002/jmv.24310
Nayel MA, Shaker OG, Hosni HN, Khalifa S, Shazly AF. Human papillomavirus (HPV) in Egyptian females: Study by cytology, histopathology, colposcopy and molecular diagnosis of high risk types. Malays J Pathol. 2016;38:257-66. PMid:28028296
Li N, Franceschi S, Howell-Jones R, Snijders PJ, Clifford GM. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. Int J Cancer. 2011;128(4):927-35. https://doi.org/10.1002/ijc.25396 PMid:20473886 DOI: https://doi.org/10.1002/ijc.25396
Assoumou SZ, Boumba LM, Mbiguino AN, Mabika BM, Belembaogo E, Khattabi A, et al. Sequence variations of human papillomavirus Type 16 E6 and E7 genes in cervical cancer isolates from Gabon. Br Microbiol Res J. 2015;8:386-94. https://doi.org/10.9734/BMRJ/2015/17225 DOI: https://doi.org/10.9734/BMRJ/2015/17225
El-Aliani A, Alaoui MA, Chaoui I, Ennaji MM, Attaleb M, Mzibri ME. Naturally occurring capsid protein variants L1 of human papillomavirus genotype 16 in Morocco. Bioinformation. 2017;13(8):241-8. https://doi.org/10.6026/97320630013241 PMid:28959092 DOI: https://doi.org/10.6026/97320630013241
Ramas V, Mirazo S, Bonilla S, Ruchansky D, Arbiza J. Analysis of human papillomavirus 16 E6, E7 genes and long control region in cervical samples from Uruguayan women. Gene. 2018;654:103-9. https://doi.org/10.1016/j.gene.2018.02.023 PMid:29454092 DOI: https://doi.org/10.1016/j.gene.2018.02.023
Leo PJ, Madeleine MM, Wang S, Schwartz SM, Newell F, Pettersson-Kymmer U, et al. Defining the geneticsusceptibility to cervical neoplasia-a genome-wide association study. PLoS Genet. 2017;13(8):e1006866. https://doi.org/10.1371/journal.pgen.1006866 PMid:28806749 DOI: https://doi.org/10.1371/journal.pgen.1006866
Bahrami A, Hasanzadeh M, Shahidsales S, Farazestanian M, Hassanian SM, Ahmadi MM, et al. Genetic susceptibility in cervical cancer: From bench to bedside. J Cell Physiol. 2018;233(3):1929-39. https://doi.org/10.1002/jcp.26019 PMid:28542881 DOI: https://doi.org/10.1002/jcp.26019
Yue Y, Yang H, Wu K, Yang L, Chen J, Huang X, et al. Genetic variability in L1 and L2 genes of HPV-16 and HPV-58 in Southwest China. PLoS One. 2013;8(1):e55204. https://doi.org/10.1371/journal.pone.0055204 PMid:23372836 DOI: https://doi.org/10.1371/journal.pone.0055204
Cerqueira DM, Moraes D, Camara GN, Amaral FA, Oyama CN. High HPV genetic diversity in women infected with HIV-1 in Brazil. Arch Virol. 2006;152(1):75-83. https://doi.org/10.1007/s00705-006-0828-6 PMid:16896550 DOI: https://doi.org/10.1007/s00705-006-0828-6
Downloads
Published
How to Cite
License
Copyright (c) 2022 Abduladheem Turki Jalil, Aleksandr Karevskiy (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0