Correlation between HbA1C and Infarct Volume in Acute Ischemic Stroke

Authors

  • Diah Kurnia Mirawati Department of Neurology, Medical Faculty, Universitas Sebelas Maret, Surakarta, Indonesia
  • Navidya A Riany Department of Neurology, Medical Faculty, Universitas Sebelas Maret, Surakarta, Indonesia
  • Subandi Subandi Department of Neurology, Medical Faculty, Universitas Sebelas Maret, Surakarta, Indonesia
  • Baarid Luqman Hamidi Department of Neurology, Medical Faculty, Universitas Sebelas Maret, Surakarta, Indonesia
  • Rachmi Fauziyah Rahayu Department of Radiology
  • Pepi Budianto Department of Neurology, Medical Faculty, Universitas Sebelas Maret, Surakarta, Indonesia
  • Muhammad Hafizhan Department of Neurology, Medical Faculty, Universitas Sebelas Maret, Surakarta, Indonesia
  • Stefanus Erdana Putra Department of Neurology, Medical Faculty, Universitas Sebelas Maret, Surakarta, Indonesia https://orcid.org/0000-0003-2613-0711

DOI:

https://doi.org/10.3889/oamjms.2022.9443

Keywords:

Hemoglobin A1C, Glycaemic control, Infarct volume, Ischemic stroke

Abstract

BACKGROUND: Stroke is second leading cause of death worldwide. Chronic hyperglycemia can promote neuronal toxicity. The previous study shows that acute hyperglycemia is correlated with infarct volume of ischemic stroke.

AIM: This study aims to investigate the correlation between hemoglobin A1C (HbA1C) and infarct volume on acute ischemic stroke.

METHODS: This is a cross-sectional study in acute ischemic stroke patient in Dr. Moewardi General Hospital, Surakarta, Indonesia. Data of infarct volume were collected from head computed tomography (CT)-scan and calculated with A × B × C/2 formula. We also collected lipid and patients’ glycemic profile from patients’ blood laboratory result. Head CT-scan and laboratory data of participants analyzed with Pearson and Spearman’s rho test for parametric and non-parametric data, respectively. We also performed multivariate analysis to evaluate confounding covariates. p < 0.05 was considered as statistically significant.

RESULTS: A total of 38 participants were included in this study, with mean infarct volume was 0.46 ± 0.64cc and mean HbA1C was 6.96 ± 2.69%. Bivariate analysis shows strong positive correlation between infarct volume and HbA1C with r = 0.898 (p < 0.001). Other variable that showed a significant correlation with infarct volume were diabetes mellitus history (r = 0.671; p < 0.001), random blood su gar (r = 0.466; p = 0.003), fasting blood sugar (r = 0.636; p < 0.001), 2-h postprandial glucose level (r = 0.646; p ≤ 0.001), high density lipoprotein (r = −0.354; p = 0.029), and triglyceride (r = 0.429; p = 0.007). Based on multivariate analysis, HbA1C regression coefficient on infarct volume was B = 0.222 (p < 0.001), indicating that HbA1C as one of the variables contributing to volume of infarct.

CONCLUSIONS: There is a strong positive correlation between infarct volume and HbA1C, and HbA1C is variable contribute to the volume of infarct.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064-89. https://doi.org/10.1161/STR.0b013e318296aeca PMid:23652265 DOI: https://doi.org/10.1161/STR.0b013e318296aeca

World Health Organization. The Top 10 Cause of Death. WHO; 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. [Last accessed on 2021 Oct 13].

Yang Y, Shi YZ, Zhang N, Wang S, Ungvari GS, Ng CH, et al. The disability rate of 5-year post-stroke and its correlation factors: A National Survey in China. PLoS One. 2016;11(11):1-9. https://doi.org/10.1371/journal.pone.0165341 PMid:27824877 DOI: https://doi.org/10.1371/journal.pone.0165341

Garg R, Chaudhuri A, Munschauer F, Dandona P. Hyperglycemia, insulin, and acute ischemic stroke: A mechanistic justification for a trial of insulin infusion therapy. Stroke. 2006;37(1):267-73. https://doi.org/10.1161/01.STR.0000195175.29487.30 Mid:16306459 DOI: https://doi.org/10.1161/01.STR.0000195175.29487.30

Hjalmarsson C, Manhem K, Bokemark L, Andersson B. The role of prestroke glycemic control on severity and outcome of acute ischemic stroke. Stroke Res Treat. 2014;2014:694569. https://doi.org/10.1155/2014/694569 PMid:25295219 DOI: https://doi.org/10.1155/2014/694569

Payabvash S, Taleb S, Benson JC, McKinney AM. Acute ischemic stroke infarct topology: Association with lesion volume and severity of symptoms at admission and discharge. AJNR Am J Neuroradiol. 2017;38(1):58-63. https://doi.org/10.3174/ajnr.A4970 PMid:27758775 DOI: https://doi.org/10.3174/ajnr.A4970

Watila MM, Nyandaiti YW, Ahidjo A, Balarabe SA, Ibrahim A, Bakki B, et al. Effect of admission hyperglycaemia on infarct size and clinical outcome in black patients with acute ischaemic stroke, northeast Nigeria. Br J Med Med Res. 2014;4(34):5324-34. DOI: https://doi.org/10.9734/BJMMR/2014/12120

Van Der Worp HB, Claus SP, Bär PR, Ramos LM, Algra A, van Gijn J, et al. Reproducibility of measurements of cerebral infarct volume on CT scans. Stroke. 2001;32(2):424-30. https://doi.org/10.1161/01.str.32.2.424 Mid:11157177 DOI: https://doi.org/10.1161/01.STR.32.2.424

Wang Y, Dai Y, Zheng J, Xie Y, Guo R, Guo X, et al. Sex difference in the incidence of stroke and its corresponding influence factors: Results from a follow-up 8.4 years of rural China hypertensive prospective cohort study. Lipids Health Dis. 2019;18(1):72. https://doi.org/10.1186/s12944-019-1010-y PMid:30909919 DOI: https://doi.org/10.1186/s12944-019-1010-y

Misbach J, Wendra A. Clinical pattern of hospitalized strokes in 28 hospitals in Indonesia. Med J Indones. 2000;9(1):29-34. DOI: https://doi.org/10.13181/mji.v9i1.647

Gibson CL. Cerebral ischemic stroke: Is gender important? J Cereb Blood Flow Metab. 2013;33(9):1355-61. https://doi.org/10.1038/jcbfm.2013.102 PMid:23756694 DOI: https://doi.org/10.1038/jcbfm.2013.102

Vymazal J, Rulseh AM, Keller J, Janouskova L. Comparison of CT and MR imaging in ischemic stroke. Insights Imaging. 2012;3(6):619-27. https://doi.org/10.1007/s13244-012-0185-9 PMid:23055115 DOI: https://doi.org/10.1007/s13244-012-0185-9

Sananmuang T, Dejsiripongsa T, Keandoungchun J, Apirakkan M. Reliability of ABC/2 Method in Measuring of Infarct Volume in Magnetic Resonance Diffusion Weighted Image. Asian J Neurosurg. 2019;14(3):801-7. https://doi.org/10.4103/ajns.AJNS_68_19 PMid:31497105 DOI: https://doi.org/10.4103/ajns.AJNS_68_19

Kufner A, Stief J, Siegerink B, Nolte C, Endres M, Fiebach JB, et al. Two simple and rapid methods based on maximum diameter accurately estimate large lesion volumes in acute stroke. Brain Behav. 2020;10(11):e01828. https://doi.org/10.1002/brb3.1828 PMid:32909402 DOI: https://doi.org/10.1002/brb3.1828

Mostafa MA, Mohamed NA. Effect of glycemic control on the severity and outcome of stroke in Saudi Arabia. Egypt J Neurol Psychiatry Neurosurg. 2015;52(4):228-31. DOI: https://doi.org/10.4103/1110-1083.170652

Sun B, Zhao H, Liu X, Lu Q, Zhao X, Pu J, et al. Elevated hemoglobin A1c Is Associated with Carotid Plaque Vulnerability: Novel Findings from Magnetic Resonance Imaging Study in Hypertensive Stroke Patients. Sci Rep. 2016;6:33246. https://doi.org/10.1038/srep33246 PMid:27629481 DOI: https://doi.org/10.1038/srep33246

Lee SH, Jang MU, Kim Y, et al. Effect of Prestroke Glycemic Variability Estimated Glycated Albumin on Stroke Severity and Infarct Volume in Diabetic Patients Presenting With Acute Ischemic Stroke. Front Endocrinol (Lausanne). 2020;11:230. https://doi.org/10.3389/fendo.2020.00230 PMid:32373074 DOI: https://doi.org/10.3389/fendo.2020.00230

Lei C, Wu B, Liu M, Chen Y. Association between hemoglobin A1C levels and clinical outcome in ischemic stroke patients with or without diabetes. J Clin Neurosci. 2015;22(3):498-503. https://doi.org/10.1016/j.jocn.2014.08.030 PMid:25595961 DOI: https://doi.org/10.1016/j.jocn.2014.08.030

Xue WY, Xu YC, Wu YW, Yang M. Observation of elevated fasting blood glucose and functional outcome after ischemic stroke in patients with and without diabetes. Oncotarget. 2017;8(40):67980-9. https://doi.org/10.18632/oncotarget.19074 PMid:28978089 DOI: https://doi.org/10.18632/oncotarget.19074

MacDougall NJ, Muir KW. Hyperglycaemia and infarct size in animal models of middle cerebral artery occlusion: Systematic review and meta-analysis. J Cereb Blood Flow Metab. 2011;31(3):807-18. https://doi.org/10.1038/jcbfm.2010.210 PMid:21157471 DOI: https://doi.org/10.1038/jcbfm.2010.210

Pikija S, Milevčić D, Trkulja V, Kidemet-Piskac S, Pavlicek I, Sokol N, et al. Higher serum triglyceride level in patients with acute ischemic stroke is associated with lower infarct volume on CT brain scans. Eur Neurol. 2006;55(2):89-92. https://doi.org/10.1159/000092780 PMid:16636555 DOI: https://doi.org/10.1159/000092780

Jimenez-Conde J, Biffi A, Rahman R, Kanakis A, Butler C, Sonni S, et al. Hyperlipidemia and reduced white matter hyperintensity volume in patients with ischemic stroke. Stroke. 2010;41(3):437-42. https://doi.org/10.1161/STROKEAHA.109.563502 Mid:20133919 DOI: https://doi.org/10.1161/STROKEAHA.109.563502

Nam KW, Kwon HM, Lee YS. High triglyceride-glucose index is associated with early recurrent ischemic lesion in acute ischemic stroke. Sci Rep. 2021;11(1):15335. https://doi.org/10.1038/s41598-021-94631-5 PMid:34321520 DOI: https://doi.org/10.1038/s41598-021-94631-5

Menet R, Bernard M, ElAli A. Hyperlipidemia in stroke pathobiology and therapy: Insights and perspectives. Front Physiol. 2018;9:488. https://doi.org/10.3389/fphys.2018.00488 PMid:29867540 DOI: https://doi.org/10.3389/fphys.2018.00488

Bonardo P, Pantiu F, Chertcoff A, León Cejas L, Pacha S, Uribe Roca C, et al. Blood pressure evolution in young patients with acute ischemic stroke: A new model for understanding the natural course of spontaneous hypertension? Int J Neurosci. 2018;128(2):140-5. https://doi.org/10.1080/00207454.2017.1378198 PMid:28889789 DOI: https://doi.org/10.1080/00207454.2017.1378198

Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab. 2018;38(12):2129-49. https://doi.org/10.1177/0271678X18800589 PMid:30198826 DOI: https://doi.org/10.1177/0271678X18800589

Cheng B, Forkert ND, Zavaglia M, Hilgetag CC, Golsari A, Siemonsen S, et al. Influence of stroke infarct location on functional outcome measured by the modified rankin scale. Stroke. 2014;45(6):1695-702. https://doi.org/10.1161/STROKEAHA.114.005152 PMid:24781084 DOI: https://doi.org/10.1161/STROKEAHA.114.005152

Hammed IK, Baydaa Abed FA, FRashid N. Glycated haemoglobin as a dual biomarker Association between HbA1c Glycated haemoglobin as a dual biomarker Association between HbA1c and dyslipidemia in type 2 diabetic patients. J Fac Med Baghdad. 2012;88(1):88-92.

Downloads

Published

2022-05-05

How to Cite

1.
Mirawati DK, Riany NA, Subandi S, Hamidi BL, Rahayu RF, Budianto P, Hafizhan M, Putra SE. Correlation between HbA1C and Infarct Volume in Acute Ischemic Stroke. Open Access Maced J Med Sci [Internet]. 2022 May 5 [cited 2024 Jun. 15];10(B):1377-82. Available from: https://oamjms.eu/index.php/mjms/article/view/9443