Potential of Indonesian Community Food Sources which are Rich in Fiber as an Alternative Staple Food for Type 2 Diabetics: A Scoping Review
DOI:
https://doi.org/10.3889/oamjms.2022.9470Keywords:
Staple food, Sorghum, Corn, Fiber, Diabetic patientAbstract
BACKGROUND: Staple foods as a source of carbohydrates contribute most of human energy needs. Based on Perkeni’s recommendation, diabetic patients can consume at least 45–60% of carbohydrate sources. In addition, several previous studies have shown that increasing the adequacy of dietary fiber above 20–25 g/day can improve glycemic control.
AIM: Our scoping review investigated the potential of Indonesian food sources, namely, sorghum and corn as a source of carbohydrates and also fiber as a substitute rice for diabetic patients.
METHODS: We systematically used electronic databases searched such as PubMed, Science Direct, Web of Science, Portal Garuda, Sinta Ristekbrin, and Google Scholar. We choose the relevant documents used experimental animals and humans’ studies then published between 2011 and 2021.
RESULTS: In total, 17 relevant articles discuss the relationship between giving corn or sorghum with blood glucose levels of animal studies and human. Some studies showed that the effect of eating sorghum or its derivatives can reduce blood glucose. As well as, the other articles indicated eating corn or its derivatives also decrease glycemic response of healthy people and experimental animals. Corn and sorghum contain dietary fiber in the form of resistant starch and have low glycemic index compare with white rice. Furthermore, corn also contains essential fat, mineral, β-Carotene, and isoflavone, while sorghum also includes phenolic components such as phenolic acids and flavonoids.
CONCLUSIONS: Sorghum and corn have the potential as an alternative staple food to achieve a better glycemic response in diabetic patients.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Ejaz H, Alsrhani A, Zafar A, Javed H, Junaid K, Abdalla AE, et al. COVID-19 and comorbidities: Deleterious impact on infected patients. J Infect Public Health. 2020;13(12):1833-9. https://doi.org/10.1016/j.jiph.2020.07.014 PMid:32788073 DOI: https://doi.org/10.1016/j.jiph.2020.07.014
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 diabetes and its impact on the immune system. Curr Diabetes Rev. 2020;16(5):442-9. https://doi.org/10.2174/1573399815666191024085838 PMid:31657690 DOI: https://doi.org/10.2174/1573399815666191024085838
Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of Type 2 diabetes mellitus on organ metabolism and the immune system. Front Immunol. 2020;11:1582. https://doi.org/10.3389/fimmu.2020.01582 PMid:32793223 DOI: https://doi.org/10.3389/fimmu.2020.01582
Primanda Y, Kep S, Kritpracha C. Dietary behaviors among patients with Type 2 diabetes mellitus in Yogyakarta, Indonesia. Diabetes Mellitus. 2011;1:975. https://doi.org/10.14710/nmjn.v1i2.975
Puri I. Diabetes Mellitus, Dietary Pattern and Diseases Burden in Indonesia: A Mini Review. In: Proceedings of the Third Andalas International Public Health Conference, AIPHC 2019, 10-11th October 2019, Padang, West Sumatera, Indonesia. Padang, Indonesia: EAI; 2020. Available from: http://eudl.eu/doi/10.4108/eai.9-10-2019.2297194 [Last accessed on 2021 Oct 14]. DOI: https://doi.org/10.4108/eai.9-10-2019.2297194
Fairhurst TH, Dobermann A. Rice in the Global Food Supply; 2002. p. 5.
Bandumula N. Rice production in Asia: Key to global food security. Proc Natl Acad Sci India Sect B Biol Sci. 2018;88(4):1323-8. DOI: https://doi.org/10.1007/s40011-017-0867-7
Wu W, Qiu J, Wang A, Li Z. Impact of whole cereals and processing on Type 2 diabetes mellitus: A review. Crit Rev Food Sci Nutr. 2020;60(9):1447-74. https://doi.org/10.1080/10408398.2019.1574708 PMid:30806077 DOI: https://doi.org/10.1080/10408398.2019.1574708
Neuenschwander M, Ballon A, Weber KS, Norat T, Aune D, Schwingshackl L, et al. Role of diet in Type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ. 2019;366:l2368. https://doi.org/10.1136/bmj.l2368 PMid:31270064 DOI: https://doi.org/10.1136/bmj.l2368
Sun Q, Spiegelman D, van Dam RM, Holmes MD, Malik VS, Willett WC. White rice, brown rice, and risk of Type 2 diabetes in US men and women. Arch Intern Med. 2010;170(11):961-9. PMid:20548009 DOI: https://doi.org/10.1001/archinternmed.2010.109
Ai Y, Jane J. Macronutrients in corn and human nutrition: Macronutrients in corn. Compr Rev Food Sci Food Saf. 2016;15(3):581-98. DOI: https://doi.org/10.1111/1541-4337.12192
Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002;76(1):5-56. https://doi.org/10.1093/ajcn/76.1.5 PMid:12081815 DOI: https://doi.org/10.1093/ajcn/76.1.5
Suarni, Aqil M. Prospect of specialty maize as functional food to support food diversification in Indonesia. IOP Conf Ser Earth Environ Sci. 2020;484:012118. DOI: https://doi.org/10.1088/1755-1315/484/1/012118
Siyuan S, Tong L, Liu R. Corn phytochemicals and their health benefits. Food Sci Hum Wellness. 2018;7(3):185-95. https://doi.org/10.1016/j.fshw.2018.09.003 DOI: https://doi.org/10.1016/j.fshw.2018.09.003
Oboh HA, Ogbebor VO. Effect of processing on the glycemic index and glycemic load of maize (Zea mays). 2010;25(2):46-52.
Dada A, Ogbera A, Ogundele S, Fasanmade O, Ohwovoriole A. Glycaemic responses to corn meals in Type 2 diabetics and nondiabetic controls. Turk J Endocrinol Metab. 2015;19(3):79-82. DOI: https://doi.org/10.4274/tjem.2877
Pratama MF, Saputri SR, Nursyamsi L, Fariha IN, Myrilla N, Mulya LD, et al. Problems and solutions of rice consumption pattern in West Java. 2019;(1):27. https://doi.org/10.5614/3bio.2019.1.1.5 DOI: https://doi.org/10.5614/3bio.2019.1.1.5
Handayani A, Widiastuti W. Sustainability of Sorghum as alternative food in Raji village Demak Regency, Central Java Province, Indonesia. 2018;16:68-83.
Abah CR, Ishiwu CN, Obiegbuna JE, Oladejo AA. Sorghum grains: Nutritional composition, functional properties and its food applications. Eur J Nutr Food Saf. 2020;12(5):101-11. DOI: https://doi.org/10.9734/ejnfs/2020/v12i530232
Proietti I, Frazzoli C, Mantovani A. Exploiting nutritional value of staple foods in the world’s semi-arid areas: Risks, benefits, challenges and opportunities of Sorghum. Healthcare. 2015;3(2):172-93. https://doi.org/10.3390/healthcare3020172 PMid:27417755 DOI: https://doi.org/10.3390/healthcare3020172
Inayah I, Metty M, Aprilia Y. Glycemic index and glycemic load of instant corn rice with the addition of tempeh flour as an alternative staple food for patients with diabetes mellitus. Indones Nutr Sci. 2021;4(2):179.
Zhang Z, Kane J, Liu AY, Venn BJ. Benefits of a rice mix on glycaemic control in Asian people with Type 2 diabetes: A randomised trial: Alternative to rice for Asian diabetics. Nutr Diet. 2016;73(2):125-31. DOI: https://doi.org/10.1111/1747-0080.12158
Asmarani F, Wirjatmadi B, Adriani M. The effects of corn flour with tempeh flour supplementation feeding in diabetes mellitus Wistar rats toward blood glucose level. J Ilm Kedokt Wijaya Kusuma. 2017;4(2):24. DOI: https://doi.org/10.30742/jikw.v4i2.10
Soong YY, Quek RY, Henry CJ. Glycemic potency of muffins made with wheat, rice, corn, oat and barley flours: A comparative study between in vivo and in vitro. Eur J Nutr. 2015;54(8):1281-5. https://doi.org/10.1007/s00394-014-0806-9 PMid:25637395 DOI: https://doi.org/10.1007/s00394-014-0806-9
Djunaidi CS, Affandi DR, Praseptiangga D. Praseptiangga D. Hypoglycemic effect of composite flour (purple sweet potato, yellow corn, and cowpea) on streptozotocin-induced diabetic rats. J Gizi Klin Indones. 2014;10(3):119. DOI: https://doi.org/10.22146/ijcn.18859
Luhovyy BL, Mollard RC, Yurchenko S, Nunez MF, Berengut S, Liu TT, et al. The effects of whole grain high-amylose maize flour as a source of resistant starch on blood glucose, satiety, and food intake in young men: High-amylose maize flour and glycaemia. J Food Sci. 2014;79(12):H2550-6. https://doi.org/10.1111/1750-3841.12690 PMid:25388622 DOI: https://doi.org/10.1111/1750-3841.12690
Forester SC, Gu Y, Lambert JD. Inhibition of starch digestion by the green tea polyphenol, (−)-epigallocatechin-3-gallate. Mol Nutr Food Res. 2012;56(11):1647-54. https://doi.org/10.1002/mnfr.201200206 PMid:23038646 DOI: https://doi.org/10.1002/mnfr.201200206
Brites CM, Trigo MJ, Carrapiço B, Alviña M, Bessa RJ. Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats. Nutr Res. 2011;31(4):302-8. https://doi.org/10.1016/j.nutres.2011.02.001 PMid:21530804 DOI: https://doi.org/10.1016/j.nutres.2011.02.001
dos Reis Gallo LR, Reis CE, Mendonça MA, da Silva VS, Pacheco MT, Botelho RB. Impact of gluten-free Sorghum bread genotypes on glycemic and antioxidant responses in healthy adults. Foods. 2021;10(10):2256. https://doi.org/10.3390/foods10102256 PMid:34681305 DOI: https://doi.org/10.3390/foods10102256
Hymavathi TV, Jyothsna E, Robert TP, Sri VT. Effect of resistant starch (RS) rich Sorghum food consumption on lipids and glucose levels of diabetic subjects. J Pharm Res Int. 2020;32:86-92. DOI: https://doi.org/10.9734/jpri/2020/v32i3030909
Salazar-López NJ, González-Aguilar GA, Rouzaud-Sández O, Loarca-Piña G, Gorinstein S, Robles-Sánchez M. Sorghum bran supplementation ameliorates dyslipidemia, glucose dysregulation, inflammation and stress oxidative induced by a high-fat diet in rats. CyTA J Food. 2020;18(1):20-30. DOI: https://doi.org/10.1080/19476337.2019.1702105
Shiekuma S, Ukeyima M, Ahuah M Janet, Blessing I, Tughgba T. Effect of Sorghum-tigernut Ibyer (A Traditional Gruel) on the fasting blood glucose levels of alloxan-induced diabetic rats. Eur J Nutr Food Saf. 2019;9(3)260-8. https://doi.org/10.9734/ejnfs/2019/v9i330065 DOI: https://doi.org/10.9734/ejnfs/2019/v9i330065
Olawole TD, Okundigie MI, Rotimi SO, Okwumabua O, Afolabi IS. Preadministration of fermented Sorghum diet provides protection against hyperglycemia-induced oxidative stress and suppressed glucose utilization in alloxan-induced diabetic rats. Front Nutr. 2018;5:16. https://doi.org/10.3389/fnut.2018.00016 PMid:29594128 DOI: https://doi.org/10.3389/fnut.2018.00016
Park JH, Lee SH, Chung IM, Park Y. Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet. Nutr Res Pract. 2012;6(4):322-7. https://doi.org/10.4162/nrp.2012.6.4.322 PMid:22977686 DOI: https://doi.org/10.4162/nrp.2012.6.4.322
Kim J, Park Y. Anti-diabetic effect of Sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr Metab. 2012;9(1):106. https://doi.org/10.1186/1743-7075-9-106 PMid:23186010 DOI: https://doi.org/10.1186/1743-7075-9-106
Lao F, Sigurdson GT, Giusti MM. Health benefits of purple corn (Zea mays L.) phenolic compounds: Health benefits of purple corn phenolics. Compr Rev Food Sci Food Saf. 2017;16(2):234-46. DOI: https://doi.org/10.1111/1541-4337.12249
Prasadi VP, Joye IJ. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients. 2020;12(10):3045. https://doi.org/10.3390/nu12103045 PMid:33027944 DOI: https://doi.org/10.3390/nu12103045
Shah TR, Prasad K, Kumar P. Maize a potential source of human nutrition and health: A review. Cogent Food Agric. 2016;10(1):1166995. https://doi.org/10.1080/23311932.2016.1166995 DOI: https://doi.org/10.1080/23311932.2016.1166995
Kemenkes. Tabel Komposisi Pangan Indonesia. Jakarta: Kementerian Kesehatan RI; 2017.
Suharoschi R, Pop OL, Vlaic RA, Muresan CI, Muresan CC, Cozma A, et al. Dietary Fiber and Metabolism. In: Dietary Fiber: Properties, Recovery, and Applications. Elsevier; 2019. p. 59-77. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128164952000034 [Last accessed on 2021 Oct 15]. DOI: https://doi.org/10.1016/B978-0-12-816495-2.00003-4
Slavin J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients. 2013;5(4):1417-35. https://doi.org/10.3390/nu5041417 PMid:23609775 DOI: https://doi.org/10.3390/nu5041417
McRae MP. Dietary fiber intake and Type 2 diabetes mellitus: An umbrella review of meta-analyses. J Chiropr Med. 2018;17(1):44-53. https://doi.org/10.1016/j.jcm.2017.11.002 PMid:29628808 DOI: https://doi.org/10.1016/j.jcm.2017.11.002
Ayua EO, Nkhata SG, Namaumbo SJ, Kamau EH, Ngoma TN, Aduol KO. Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing Type 2 diabetes may be reduced in food systems. Heliyon. 2021;7(2):e06245. https://doi.org/10.1016/j.heliyon.2021.e06245 PMid:33659753 DOI: https://doi.org/10.1016/j.heliyon.2021.e06245
Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010;11(4):1365-402. https://doi.org/10.3390/ijms11041365 PMid:20480025 DOI: https://doi.org/10.3390/ijms11041365
Poquette NM, Gu X, Lee SO. Grain Sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014;5(5):894-9. https://doi.org/10.1039/c3fo60432b PMid:24608948 DOI: https://doi.org/10.1039/C3FO60432B
Xiong Y, Zhang P, Warner RD, Fang Z. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr Rev Food Sci Food Saf. 2019;18(6):2025-46. https://doi.org/10.1111/1541-4337.12506 DOI: https://doi.org/10.1111/1541-4337.12506
Xu J, Wang W, Zhao Y. Phenolic compounds in whole grain Sorghum and their health benefits. Foods. 2021;10(8):1921. https://doi.org/10.3390/foods10081921 PMid:34441697 DOI: https://doi.org/10.3390/foods10081921
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Dwipajati Dwipajati, Endang Widajati, Ainaya Fatihatul Ainaya, R. D. Novanda (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0