Nanocarriers System for Vitamin D as Nutraceutical in Type 2 Diabetes: A Review

Authors

  • Reza Achmad Maulana Department of Nutrition Science, Medical Faculty, Diponegoro University, Jawa Tengah, Indonesia
  • Faizah Fulyani Department of Medicine, Medical Faculty, Diponegoro University, Jawa Tengah, Indonesia
  • Gemala Anjani Department of Nutrition Science, Medical Faculty, Diponegoro University, Jawa Tengah, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9507

Keywords:

Nanocarriers, Vitamin D, Diabetes mellitus, Encapsulation

Abstract

Incidence of diabetes are common among population around the world. Diabetes may lead to other complication and increasing morbidity and mortality. Many ways have been done to treat and prevent the development of diabetes. In addition of conventional pharmacotherapy, therapeutic therapy shown good opportunity to maintain and improve diabetic conditions. Vitamin D3 is known as nutraceutical and has good opportunity to develop the medication of type 2 diabetes. In another way, vitamin D3 naturally easy to damage by environmental condition. To overcome this weakness, researcher around the world have developed the method for protecting unstable compound as vitamin D3 with encapsulation. Liprotide is one of the various materials which can be used for encapsulation. Combination of lipid and protein molecules is expected to be a carrier and protector of vitamin D3 in gastrointestinal system. Here we review the research advances of liprotide as nanocarriers and vitamin D3 as nutraceuticals to discuss in applied on type 2 diabetes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

IDF Diabetes Atlas; 2019. Available from: https://idf.org/e-library/epidemiology-research/diabetes-atlas.html [Last accessed on 2021 Apr 25].

Riskesdas K. Main Results of Basic Health Research (RISKESDAS). Vol. 44. Indonesian Health Ministry; 2018.

Nasr MH, Hassan BA, Othman N, Karuppannan M, Abdulaziz NB, Mohammed AH, et al. Prevalence of Vitamin D deficiency between Type 2 diabetes mellitus patients and non-diabetics in the Arab Gulf. Diabetes Metab Syndr Obes. 2022;15:647-57. https://doi.org/10.2147/DMSO.S350626 PMid:35250286 DOI: https://doi.org/10.2147/DMSO.S350626

Amrein K, Scherkl M, Hoffmann M, Neuwersch-Sommeregger S, Köstenberger M, Berisha TA, et al. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur J Clin Nutr. 2020;74(11):1498-513. https://doi.org/10.1038/s41430-020-0558-y PMid:31959942 DOI: https://doi.org/10.1038/s41430-020-0558-y

Divakar U, Sathish T, Soljak M, Bajpai R, Dunleavy G, Visvalingam N, et al. Prevalence of Vitamin D deficiency and its associated work-related factors among indoor workers in a multi-ethnic southeast asian country. Int J Environ Res Public Health. 2020;17(1):164. https://doi.org/10.3390/ijerph17010164 PMid:31881679 DOI: https://doi.org/10.3390/ijerph17010164

Ashraf A, Alvarez JA. Role of Vitamin D in insulin secretion and insulin sensitivity for glucose homeostasis. Int J Endocrinol. 2010;2010:351385. https://doi.org/10.1155/2010/351385 PMid:20011094 DOI: https://doi.org/10.1155/2010/351385

Mitri J, Pittas AG. Vitamin D and diabetes. Contemp Endocrinol. 2018;43(1):135-49. DOI: https://doi.org/10.1016/j.ecl.2013.09.010

Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365-408. https://doi.org/10.1152/physrev.00014.2015 PMid:26681795 DOI: https://doi.org/10.1152/physrev.00014.2015

Cribb VL, Northstone K, Hopkins D, Emmett PM. Sources of Vitamin D and calcium in the diets of preschool children in the UK and the theoretical effect of food fortification. J Hum Nutr Diet. 2015;28(6):583-92. https://doi.org/10.1111/jhn.12277 PMid:25280181 DOI: https://doi.org/10.1111/jhn.12277

Carolyn D, Berdanier JZ. Advanced Nutrition Macronutrients, Micronutrients, and Metabolism. Boca Raton: CRC Press, Taylor Francis Group; 1995.

Hasanvand E, Fathi M, Bassi A, Javanmard M. Food and bioproducts processing novel starch based nanocarrier for vitamin d fortification of milk. J Food Bioprod Process. 2015;96:264-77. https://doi.org/10.1016/j.fbp.2015.09.007 DOI: https://doi.org/10.1016/j.fbp.2015.09.007

Crintea A, Dutu AG, Sovrea A, Constantin A, Samasca G, Masalar AL, et al. Nanocarriers for drug delivery : An overview with emphasis on Vitamin D and K transportation. 2022;1-26. DOI: https://doi.org/10.3390/nano12081376

Din Fu, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-309. https://doi.org/10.2147/IJN.S146315 PMid:29042776 DOI: https://doi.org/10.2147/IJN.S146315

Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: From molecular design to material synthesis and functionspecific applications. J Nanobiotechnol. 2021;19(1):1-31. https://https://doi.org/10.1186/s12951-021-00999-x DOI: https://doi.org/10.1186/s12951-021-00999-x

Giudicessi JR, Ackerman BA, Pantalone DW, Schneider KL, Valentine SE, Simoni JM, et al. NIH Public access. AIDS Behav. 2012;23(1):1031-43.

Murugan C, Rayappan K, Thangam R, Bhanumathi R, Shanthi K, Vivek R, et al. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in bresat cancer cells: An improved nanomedicine strategies. Sci Rep. 2016;6:34053. https://doi.org/10.1038/srep34053 PMid:27725731 DOI: https://doi.org/10.1038/srep34053

Corma A, Botella P, Rivero-Buceta E. Silica-based stimuliresponsive systems for antitumor drug delivery and controlled release. Pharmaceutics. 2022;14(1):110. https://doi.org/10.3390/pharmaceutics14010110 PMid:35057006 DOI: https://doi.org/10.3390/pharmaceutics14010110

Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev. 2021;174(103):140-67. Available from: https://https://doi.org/10.1016/j.addr.2021.04.006 DOI: https://doi.org/10.1016/j.addr.2021.04.006

Millner LM, Linder MW. HHS public access. Physiol Behav. 2019;176(5):139-48.

Park S, Kim DS, Kang S. Vitamin D deficiency impairs glucosestimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats. J Nutr Biochem. 2016;27:257-65. Https://doi.org/10.1016/j.jnutbio.2015.09.013 PMid:26522682 DOI: https://doi.org/10.1016/j.jnutbio.2015.09.013

World Health Organization. WHO Global Report. Global Report on Diabetes. Geneva: World Health Organization; 2016. Available from: http://www.who.int/about/licensing/copyright_form/index.html%0Ahttp://www.who.int/about/licensing/copyright_form/index.html%0Ahttp://www.who.int/about/licensing/copyright_form/index.html%0Ahttps://apps.who.int/iris/handle/10665/204871%0Ahttp://www.who.int [Last accessed on 2022 May 10].

Diabetes Care. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):81-90. https://doi.org/10.2337/dc14-S081 PMid:24357215 DOI: https://doi.org/10.2337/dc14-S081

Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of Type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. https://doi.org/10.3390/ijms21176275 PMid:32872570 DOI: https://doi.org/10.3390/ijms21176275

Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of Type 2 diabetes: Perspectives on the past, present, and future. Lancet. 2014;383(9922):1068-83. https://doi.org/10.1016/S0140-6736(13)62154-6 PMid:24315620 DOI: https://doi.org/10.1016/S0140-6736(13)62154-6

Christensen AA, Gannon M. The beta cell in Type 2 diabetes. Curr Diab Rep. 2019;19(9):81. https://doi.org/10.1007/s11892-019-1196-4 PMid:31399863 DOI: https://doi.org/10.1007/s11892-019-1196-4

Chinmay S, Marathe, Rayner CK, Wu T, Karen L, et al. Gastrointestinal Disorders in Diabetes. South Dartmouth, MA: MDText.com, Inc.; 2020.

Mahmoodani F, Perera CO, Abernethy G, Fedrizzi B, Chen H. Lipid oxidation and Vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage. Food Chem. 2018;261:149-56. PMid:29739575 DOI: https://doi.org/10.1016/j.foodchem.2018.04.043

Zenebe T, Ahmed N, Kabeta T, Kebede G. Review on medicinal and nutritional values of goat milk. Acad J Nutr. 2014;3(3):30-9.

Cashman KD. Vitamin D: Dietary requirements and food fortification as a means of helping achieve adequate

Vitamin D status. J Steroid Biochem Mol Biol. 2015;148:19-26. https://doi.org/10.1016/j.jsbmb.2015.01.023 PMid:25637758 DOI: https://doi.org/10.1016/j.jsbmb.2015.01.023

Al Thani M, Sadoun E, Sofroniou A, Jayyousi A, Baagar KA, Al Hammaq A, et al. The effect of Vitamin D supplementation on the glycemic control of pre-diabetic Qatari patients in a randomized control trial. BMC Nutr. 2019;5:46. https://doi.org/10.1186/s40795-019-0311-x PMid:32153959 DOI: https://doi.org/10.1186/s40795-019-0311-x

Cardoso-Sánchez LI, Gómez-Díaz RA, Wacher NH. Vitamin D intake associates with insulin resistance in Type 2 diabetes, but not in latent autoimmune diabetes in adults. Nutr Res. 2015;35(8):689-99. https://doi.org/10.1016/j.nutres.2015.05.019 PMid:26101151 DOI: https://doi.org/10.1016/j.nutres.2015.05.019

Maulana RA, Afifah DN, Rustanti N, Anjani G, Panunggal B. Effect of goat milk kefir fortified with Vitamin D3 on blood glucose and insulin in rats. Pak J Med Health Sci. 2019;13(4):1272-5.

Jafari T, Faghihimani E, Feizi A, Iraj B, Javanmard SH, Esmaillzadeh A, et al. Effects of Vitamin D-fortified low fat yogurt on glycemic status, anthropometric indexes, inflammation, and bone turnover in diabetic postmenopausal women: A randomised controlled clinical trial. Clin Nutr. 2016;35(1):67-76. https://doi.org/10.1016/j.clnu.2015.02.014 PMid:25794439 DOI: https://doi.org/10.1016/j.clnu.2015.02.014

White JH. Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun. 2008;76(9):3837-43. https://doi.org/10.1128/IAI.00353-08 PMid:18505808 DOI: https://doi.org/10.1128/IAI.00353-08

Mathieu C, Badenhoop K. Vitamin D and Type 1 diabetes mellitus: State of the art. Trends Endocrinol Metab. 2005;16(6):261-6. https://doi.org/10.1016/j.tem.2005.06.004 PMid:15996876 DOI: https://doi.org/10.1016/j.tem.2005.06.004

Benetti E, Mastrocola R, Chiazza F, Nigro D, D’Antona G, Bordano, et al. Effects of Vitamin D on insulin resistance and myosteatosis in diet-induced obese mice. PLoS One. 2018;13(1):e0189707. https://doi.org/10.1371/journal.pone.0189707 PMid:29342166 DOI: https://doi.org/10.1371/journal.pone.0189707

Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett. 2019;17(2):849-65. DOI: https://doi.org/10.1007/s10311-018-00841-1

Qian WY, Sun DM, Zhu RR, Du XL, Liu H, Wang SL. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int J Nanomed. 2012;7:5781-92. https://doi.org/10.2147/IJN.S34773 PMid:23185118 DOI: https://doi.org/10.2147/IJN.S34773

Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215-23. https://doi.org/10.1016/j.yexmp.2008.12.004 PMid:19186176 DOI: https://doi.org/10.1016/j.yexmp.2008.12.004

Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ. Nanotechnology: A focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol. 2006;1(3):340-50. https://doi.org/10.1007/s11481-006-9032-4 PMid:18040810 DOI: https://doi.org/10.1007/s11481-006-9032-4

Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320-64. https://doi.org/10.1002/anie.201403036 PMid:25294565 DOI: https://doi.org/10.1002/anie.201403036

Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine. 2010;6(1):9-24. https://doi.org/10.1016/j.nano.2009.04.008 PMid:19447208 DOI: https://doi.org/10.1016/j.nano.2009.04.008

How CW, Rasedee A, Manickam S, Rosli R. Tamoxifenloaded nanostructured lipid carrier as a drug delivery system: characterization, stability assessment and cytotoxicity. Colloids Surf B Biointerf. 2013;112:393-9. https://doi.org/10.1016/j.colsurfb.2013.08.009 PMid:24036474 DOI: https://doi.org/10.1016/j.colsurfb.2013.08.009

Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1-33. https://doi.org/10.1186/s12951-018-0392-8 DOI: https://doi.org/10.1186/s12951-018-0392-8

Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99(1):53-62. https://doi.org/10.1016/j.jconrel.2004.06.015 PMid:15342180 DOI: https://doi.org/10.1016/j.jconrel.2004.06.015

Arpicco S, Battaglia L, Brusa P, Cavalli R, Chirio D, Dosio F, et al. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. J Drug Deliv Sci Technol. 2016;32:298-312. DOI: https://doi.org/10.1016/j.jddst.2015.09.004

Patil H, Tiwari RV, Repka MA. Recent advancements in mucoadhesive floating drug delivery systems: A minireview. J Drug Deliv Sci Technol. 2016;31:65-71. https://doi.org/10.1016/j.jddst.2015.12.002 DOI: https://doi.org/10.1016/j.jddst.2015.12.002

Christie WW. Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res. 1985;26:507-12. PMid:4009068 DOI: https://doi.org/10.1016/S0022-2275(20)34367-4

Borkar N, Xia D, Holm R, Gan Y, Müllertz A, Yang M, et al. Investigating the correlation between in vivo absorption and in vitro release of fenofibrate from lipid matrix particles in biorelevant medium. Eur J Pharm Sci. 2014;51(1):204-10. https://doi.org/10.1016/j.ejps.2013.09.022 PMid:24134899 DOI: https://doi.org/10.1016/j.ejps.2013.09.022

Rosiaux Y, Jannin V, Hughes S, Marchaud D. Solid lipid excipients matrix agents for sustained drug delivery. J Control Release. 2014;188:18-30. https://doi.org/10.1016/j.jconrel.2014.06.004 PMid:24929038 DOI: https://doi.org/10.1016/j.jconrel.2014.06.004

Xia D, Cui F, Gan Y, Mu H, Yang M. Design of lipid matrix particles for fenofibrate: effect of polymorphism of glycerol monostearate on drug incorporation and release. J Pharm Sci. 2014;103(2):697-705. https://doi.org/10.1002/jps.23830 PMid:24375427 DOI: https://doi.org/10.1002/jps.23830

Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592-9. https://doi.org/10.1016/j.tips.2009.08.004 PMid:19837467 DOI: https://doi.org/10.1016/j.tips.2009.08.004

Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161-77. https://doi.org/10.1016/s0939-6411(00)00087-4 PMid:10840199 DOI: https://doi.org/10.1016/S0939-6411(00)00087-4

Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed. 2007;2(3):289-300. PMid:18019829

Hallan SS, Kaur P, Kaur V, Mishra N, Vaidya B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):334-49. https://doi.org/10.3109/21691401.2014.951721 PMid:25237838 DOI: https://doi.org/10.3109/21691401.2014.951721

Bondì ML, Craparo EF, Giammona G, Cervello M, Azzolina A, Diana P, et al. Nanostructured lipid carriers-containing anticancer compounds: Preparation, characterization, and cytotoxicity studies. Drug Deliv. 2007;14(2):61-7. https://doi.org/10.1080/10717540600739914 PMid:17364869 DOI: https://doi.org/10.1080/10717540600739914

Stella B, Peira E, Dianzani C, Gallarate M, Battaglia L, Gigliotti CL, et al. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomater (Basel). 2018;8(2):110. https://doi.org/10.3390/nano8020110 PMid:29462932 DOI: https://doi.org/10.3390/nano8020110

Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, et al. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25(17):3982. https://doi.org/10.3390/molecules25173982 PMid:32882920 DOI: https://doi.org/10.3390/molecules25173982

Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975-99. https://doi.org/10.2147/IJN.S68861 PMid:25678787 DOI: https://doi.org/10.2147/IJN.S68861

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. DOI: https://doi.org/10.1186/1556-276X-8-102

Mohan A, Rajendran SR, He QS, Bazinet L, Udenigwe CC. Encapsulation of Food Protein Hydrolysates and Peptides: A Review; 2015. Available from: https://www.rsc.org/advances [Last accessed on 2022 May 15]. DOI: https://doi.org/10.1039/C5RA13419F

Ismail R, Csóka I. Novel strategies in the oral delivery of antidiabetic peptide drugs - Insulin, GLP 1 and its analogs. Eur J Pharm Biopharm. 2017;115:257-67 https://doi.org/10.1016/j.ejpb.2017.03.015 PMid:28336368 DOI: https://doi.org/10.1016/j.ejpb.2017.03.015

Anjani G, Ohta A, Yasuhara K, Asakawa T. Solubilization of genistein by caseinate micellar system. J Oleo Sci. 2014;63(4):413-22. doi.org10.5650/jos.ess13198 PMid:24599106 DOI: https://doi.org/10.5650/jos.ess13198

Sur S, Fries AC, Kinzler KW, Zhou S, Vogelstein B. Remote loading of preencapsulated drugs into stealth liposomes. Proc Natl Acad Sci U S A. 2014;111(6):2283-8. https://doi.org/10.1073/pnas.1324135111 PMid:24474802 DOI: https://doi.org/10.1073/pnas.1324135111

Hanafy NA, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel). 2018;10(7):238. https://doi.org/10.3390/cancers10070238 PMid:30037052 DOI: https://doi.org/10.3390/cancers10070238

Al-Tikriti Y, Hansson P. Drug-Induced phase separation in polyelectrolyte microgels. Gels (Basel). 2021;8(1):4. https://https://doi.org/10.3390/gels8010004 DOI: https://doi.org/10.3390/gels8010004

Censi R, Di Martino P, Vermonden T, Hennink WE. Hydrogels for protein delivery in tissue engineering. J Control Release. 2012;161(2):680-92. https://doi.org/10.1016/j.jconrel.2012.03.002 PMid:22421425 DOI: https://doi.org/10.1016/j.jconrel.2012.03.002

Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf). 2008;49(8):1993-2007. https://https://doi.org/10.1016/j.polymer.2008.01.027 DOI: https://doi.org/10.1016/j.polymer.2008.01.027

Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11(10):4985-98. https://doi.org/10.1007/s12274-018-2152-3 PMid:30370014 DOI: https://doi.org/10.1007/s12274-018-2152-3

Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly watersoluble drugs. J Drug Deliv. 2013;2013:340315. https://doi.org/10.1155/2013/340315 PMid:23936656 DOI: https://doi.org/10.1155/2013/340315

Kaspersen JD, Pedersen JN, Hansted JG, Nielsen SB, Sakthivel S, Wilhelm K, et al. Generic structures of cytotoxic liprotides: Nano-sized complexes with oleic acid cores and shells of disordered proteins. ChemBioChem. 2014;15(18):2693-702. https://https://doi.org/10.1002/cbic.201402407 DOI: https://doi.org/10.1002/cbic.201402407

Pedersen JN, Frislev HS, Pedersen JS, Otzen DE. Using proteinfatty acid complexes to improve Vitamin D stability. J Dairy Sci. 2016;99(10):7755-67. https://doi.org/10.3168/jds.2016-11343 PMid:27474981 DOI: https://doi.org/10.3168/jds.2016-11343

Sørensen HV, Pedersen JN, Pedersen JS, Otzen DE. Tailoring thermal treatment to form liprotide complexes between oleic acid and different proteins. Biochim Biophys Acta Proteins Proteomics. 2017;1865(6):682-93. https://doi.org/10.1016/j.bbapap.2017.03.011 PMid:28351690 DOI: https://doi.org/10.1016/j.bbapap.2017.03.011

Dopierała K, Krajewska M, Prochaska K. Binding of α-lactalbumin to oleic acid monolayer and its relevance to formation of HAMLET-like complexes. Int Dairy J. 2019;89:96-104. DOI: https://doi.org/10.1016/j.idairyj.2018.08.017

Vieira EF, Souza S. Formulation strategies for improving the stability and bioavailability of Vitamin D-fortified beverages: A review. Foods. 2022;11(6):847. https://doi.org/10.3390/foods11060847 PMid:35327269 DOI: https://doi.org/10.3390/foods11060847

Delavari B, Saboury AA, Atri MS, Ghasemi A, Bigdeli B, Khammari A, et al. Alpha-lactalbumin: A new carrier for Vitamin D3 food enrichment. Food Hydrocoll. 2015;45:124-31. DOI: https://doi.org/10.1016/j.foodhyd.2014.10.017

Tavares T, Malcata FX. Whey and Whey Powders: Protein Concentrates and Fractions. 1st ed. Amsterdam: Encyclopedia of Food and Health, Elsevier Ltd.; 2015. p. 506-13. DOI: https://doi.org/10.1016/B978-0-12-384947-2.00748-0

Kamau SM, Cheison SC, Chen W, Liu XM, Lu RR. Alphalactalbumin: Its production technologies and bioactive peptides. Compr Rev Food Sci Food Saf. 2010;9(2):197-212. https:// https://doi.org/10.1111/j.1541-4337.2009.00100.x DOI: https://doi.org/10.1111/j.1541-4337.2009.00100.x

Layman DK, Lönnerdal B, Fernstrom JD. Applications for a-lactalbumin in human nutrition. Nutr Rev. 2018;76(6):444-60. https://doi.org/10.1093/nutrit/nuy004 PMid:29617841 DOI: https://doi.org/10.1093/nutrit/nuy004

Minet-Ringuet J, Le Ruyet PM, Tomé D, Even PC. A tryptophanrich protein diet efficiently restores sleep after food deprivation in the rat. Behav Brain Res. 2004;152(2):335-40. https://doi.org/10.1016/j.bbr.2003.10.018 PMid:15196801 DOI: https://doi.org/10.1016/j.bbr.2003.10.018

Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International society of sports nutrition position stand: Protein and exercise. J Int Soc Sports Nutr. 2017;14(1):1-25. https://doi.org/10.1186/s12970-017-0177-8 PMid:28642676 DOI: https://doi.org/10.1186/s12970-017-0177-8

Rovoli M, Sawyer GK. Non Natural Fatty Acids Binding Affinity to Bovine β-Lactoglobulin: Crystallographic and Thermodynamics Studies. Lactoglobulin Crystallographic Thermodynamic Studies; 2013.

Le Maux S, Bouhallab S, Giblin L, Brodkorb A, Croguennec T. Bovine β-lactoglobulin/fatty acid complexes: Binding, structural, and biological properties. Dairy Sci Technol. 2014;94(5)409-26. https://doi.org/10.1007/s13594-014-0160-y PMid:25110551 DOI: https://doi.org/10.1007/s13594-014-0160-y

Diarrassouba F, Garrait G, Remondetto G, Alvarez P, Beyssac E. Increased stability and protease resistance of the β-lactoglobulin Vitamin D3 complex. Food Chem. 2013;145:646-52. https://doi.org/10.1016/j.foodchem.2013.08.075 DOI: https://doi.org/10.1016/j.foodchem.2013.08.075

Fang B, Zhang M, Tian M, Ren F. Self-assembled β-lactoglobulinoleic acid and β-lactoglobulin-linoleic acid complexes with antitumor activities.pdf. J Dairy Sci. 2015;98(5):2898-907. https://doi.org/10.3168/jds.2014-8993 PMid:25771044 DOI: https://doi.org/10.3168/jds.2014-8993

Abbasi A, Emam-Djomeh Z, Mousavi MAE, Davoodi D. Stability of Vitamin D3 encapsulated in nanoparticles of whey protein isolate. Food Chem. 2014;143:379-83. https://doi.org/10.1016/j.foodchem.2013.08.018 PMid:24054255 DOI: https://doi.org/10.1016/j.foodchem.2013.08.018

Olivier CE, Lima RP, Pinto DG, dos Santos RA, da Silva GK, Lorena SL, et al. In search of a tolerance-induction strategy for cow’s milk allergies: Significant reduction of beta-lactoglobulin allergenicity via transglutaminase/cysteine polymerization. Clinics. 2012;67(10):1171-9. https://doi.org/10.6061/clinics/2012(10)09 PMid:23070344 DOI: https://doi.org/10.6061/clinics/2012(10)09

Soriguer F, Esteva I, Rojo-Martínez G, de Adana MS, Dobarganes MC, García-Almeida JM, et al. Oleic acid from cooking oils is associated with lower insulin resistance in the general population (Pizarra study). Eur J Endocrinol. 2004;150(1):33-9. https://doi.org/10.1530/eje.0.1500033 PMid:14713277 DOI: https://doi.org/10.1530/eje.0.1500033

Casbarra A, Birolo L, Infusini G, Dal Piaz F, Svensson M, Pucci P, et al. Conformational analysis of HAMLET, the folding variant of human α-lactalbumin associated with apoptosis. Protein Sci. 2004;13(5):1322-30. https://doi.org/10.1110/ps.03474704 PMid:15075403 DOI: https://doi.org/10.1110/ps.03474704

Supriyatna A, Amalia D, Jauhari DH. Amilage, lipase, and protease activity from larva. J Istek. 2015;9(2):246-52.

Megiandari A. Isolation and Characterization of Keratinolytic Protease Enzymes from the Intestines of Water Monitor Lizards; 2009.

da Silva GH, de Moura LD, de Carvalho FV, Geronimo G, Mendonça TC, de Lima FF, et al. Antineoplastics encapsulated in nanostructured lipid carriers. Molecules. 2021;26(22):6929. https://doi.org/10.3390/molecules26226929 PMid:34834022 DOI: https://doi.org/10.3390/molecules26226929

Mohammadi M, Pezeshki A, Abbasi MM, Ghanbarzadeh B, Hamishehkar H. Vitamin D 3-loaded nanostructured lipid carriers as a potential approach for fortifying food beverages; in vitro and in vivo evaluation. Adv Pharm Bull. 2017;7(1):61-71. https://doi.org/10.15171/apb.2017.008 PMid:28507938 DOI: https://doi.org/10.15171/apb.2017.008

Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, et al. Lipid nanostructures for targeting brain cancer. Heliyon. 2021;7(9):e07994. https://doi.org/10.1016/j.heliyon.2021.e07994 PMid:34632135 DOI: https://doi.org/10.1016/j.heliyon.2021.e07994

Bi Y, Xia H, Li L, Lee RJ, Xie J, Liu Z, et al. Liposomal Vitamin D3 as an anti-aging agent for the skin. Pharmaceutics. 2019;11(7):311. doi.org10.3390/pharmaceutics11070311 PMid:31277236 DOI: https://doi.org/10.3390/pharmaceutics11070311

Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan nanoparticles at the biological interface: Implications for drug delivery. Pharmaceutics. 2021;13(10):1686. https://doi.org/10.3390/pharmaceutics13101686 PMid:34683979 DOI: https://doi.org/10.3390/pharmaceutics13101686

Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural Polymer Drug Delivery Systems. Berlin: Springer; 2016. p. 33-93. DOI: https://doi.org/10.1007/978-3-319-41129-3_2

Sadiq U, Gill H, Chandrapala J. Casein micelles as an emerging delivery system for bioactive food components. Foods 2021;10:1965. https://https://doi.org/10.3390/foods10081965 DOI: https://doi.org/10.3390/foods10081965

Tan Y, Li R, Liu C, Mundo JM, Zhou H, Liu J, et al. Chitosan reduces Vitamin D bioaccessibility in food emulsions by binding to mixed micelles. Food Funct. 2020;11(1):187-99. DOI: https://doi.org/10.1039/C9FO02164G

Downloads

Published

2022-05-27

How to Cite

1.
Maulana RA, Fulyani F, Anjani G. Nanocarriers System for Vitamin D as Nutraceutical in Type 2 Diabetes: A Review. Open Access Maced J Med Sci [Internet]. 2022 May 27 [cited 2024 Dec. 3];10(F):427-36. Available from: https://oamjms.eu/index.php/mjms/article/view/9507

Issue

Section

Narrative Review Article

Categories

Funding data