Cortisol, Prolactin, and Breastmilk Volume; A Promising Pattern for Reducing Postpartum Depression
DOI:
https://doi.org/10.3889/oamjms.2022.9545Keywords:
Breastmilk volume, Cortisol, Depression, Postnatal, ProlactinAbstract
BACKGROUND: Research shows postnatal depression and shorter breastfeeding are consistently related, but their causal effect remains debatable. To reduce the impact of mental disorders in the perinatal period, lactation may give a significant neuroendocrine effect.
AIM: This study aimed to examine hormonal patterns and estimated breastmilk volume of mothers with depression.
MATERIALS AND METHODS: This study was conducted during the three-trimester to 6-week postnatal period. It involved 60 pregnant women from South Sulawesi, Indonesia. Analysis of variance with repeated measures was used to compare and review fluctuations and effect sizes of cortisol, prolactin, and breastmilk volume of mothers with depression symptoms.
RESULTS: The mean cortisol levels rose in the 4th week and decreased in the 6th week in both groups. There was no substantial difference in the cortisol levels between these periods (p = 0.534; p = 0.553; and p = 0.660), but the prolactin levels continuously increased by 2 weeks and substantially progressed in the 4th and 6th weeks (p < 0.028, p < 0.009), respectively. There was no positive association between cortisol and prolactin levels (p = 0.384). The breastmilk volume was higher every week only in mothers without depression and it slightly decreased in other categories. This study emphasized the prolactin’s protective effect size on a stressful environment characterized by high cortisol; a significant rise in prolactin levels occurred in the 2nd and 4th weeks of postnatal, marking the higher lactation.
CONCLUSIONS: Breastfeeding hormones may provide protection against postpartum depression in moms. It is critical to establish a history of prior trauma in nursing mothers in order to facilitate diagnosis and proper care.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
American Psychiatric Association. Cautionary statement for forensic use of DSM-5. In: Diagnostic and Statistical Manual of Mental Disorders. 5th ed. United States: American Psychiatric Publishing, Inc.; 2013. https://doi.org/10.1016/0002-9378(76)90154-x DOI: https://doi.org/10.1016/0002-9378(76)90154-X
Chowdhury R, Sinha B, Sankar MJ, Taneja S, Bhandari N, Rollins N, et al. Breastfeeding and maternal health outcomes: A systematic review and meta-analysis. Acta Paediatr. 2015;104(467):96-113. https://doi.org/10.1111/apa.13102 PMid:26172878 DOI: https://doi.org/10.1111/apa.13102
Dias CC, Figueiredo B. Breastfeeding and depression: A systematic review of the literature. J Affect Disord. 2015;171:142-54. PMid:25305429 DOI: https://doi.org/10.1016/j.jad.2014.09.022
Cox EQ, Stuebe A, Pearson B, Grewen K, Rubinow D, Meltzer- Brody S. Oxytocin and HPA stress axis reactivity in postpartum women. Psychoneuroendocrinology. 2015;55:164-72. https://doi.org/10.1016/j.psyneuen.2015.02.009 PMid:25768266 DOI: https://doi.org/10.1016/j.psyneuen.2015.02.009
Donaldson-Myles F. Can hormones in breastfeeding protect against postnatal depression? Br J Midwifery. 2012;20(2):88-93. https://doi.org/10.12968/bjom.2012.20.2.88 DOI: https://doi.org/10.12968/bjom.2012.20.2.88
Anderson SM, MacLean PS, McManaman JL, Neville MC. Lactation and its hormonal control. In: Knobil and Neill’s Physiology of Reproduction. Netherlands: Elsevier; 2015. p. 2055-105. https://doi.org/10.1016/b978-0-12-397175-3.00046-6 DOI: https://doi.org/10.1016/B978-0-12-397175-3.00046-6
Stuebe AM, Grewen K, Pedersen CA, Propper C, Meltzer-Brody S. Failed lactation and perinatal depression: Common problems with shared neuroendocrine mechanisms? J Womens Health (Larchmt). 2012;21(3):264-72. https://doi.org/10.1089/jwh.2011.3083 PMid:22204416 DOI: https://doi.org/10.1089/jwh.2011.3083
VanderKruik R, Barreix M, Chou D, Allen T, Say L, Cohen LS, et al. The global prevalence of postpartum psychosis: A systematic review. BMC Psychiatry. 2017;17(1):272. https://doi.org/10.1186/s12888-017-1427-7 PMid:28754094 DOI: https://doi.org/10.1186/s12888-017-1427-7
de Rezende MG, Garcia-Leal C, de Figueiredo FP, Cavalli Rde C, Spanghero MS, Barbieri MA, et al. Altered functioning of the HPA axis in depressed postpartum women. J Affect Disord. 2016;193:249-56. https://doi.org/10.1016/j.jad.2015.12.065 PMid:26773916 DOI: https://doi.org/10.1016/j.jad.2015.12.065
Gillespie CF, Nemeroff CB. Hypercortisolemia and depression. Psychosom Med. 2005;67(1):S26-8. PMid:15953796 DOI: https://doi.org/10.1097/01.psy.0000163456.22154.d2
Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25-36. https://doi.org/10.1016/j.psyneuen.2016.11.036 PMid:28012291 DOI: https://doi.org/10.1016/j.psyneuen.2016.11.036
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol. 2018;9:1091. https://doi.org/10.3389/fphys.2018.01091 PMid:30174608 DOI: https://doi.org/10.3389/fphys.2018.01091
Iliadis SI, Comasco E, Sylvén S, Hellgren C, Sundström Poromaa I, Skalkidou A. Prenatal and postpartum evening salivary cortisol levels in association with peripartum depressive symptoms. PLoS One. 2015;10(8):e0135471. https://doi.org/10.1371/journal.pone.0135471 PMid:26322643 DOI: https://doi.org/10.1371/journal.pone.0135471
Parry BL, Sorenson DL, Meliska CJ, Basavaraj N, Zirpoli GG, Gamst A, et al. Hormonal basis of mood and postpartum disorders. Curr Womens Health Rep. 2003;3(3):230-5. PMid:12734034
Vigod SN, Buist A, Steiner M. Mood, anxiety and obsessive compulsive disorders in pregnancy and the postpartum period: Phenomenology and epidemiology. In: Castle DJ, Abel KM, editors. Comprehensive Women’s Mental Health. Cambridge: Cambridge University Press; 2016. p. 101-21. https://doi.org/10.1017/cbo9781107045132.011 DOI: https://doi.org/10.1017/CBO9781107045132.011
Martinez-Torteya C, Dayton CJ, Beeghly M, Seng JS, McGinnis E, Broderick A, et al. Maternal parenting predicts infant biobehavioral regulation among women with a history of childhood maltreatment. Dev Psychopathol. 2014;26(2):379-92. https://doi.org/10.1017/s0954579414000017 PMid:24621516 DOI: https://doi.org/10.1017/S0954579414000017
Balbo M, Leproult R, Van Cauter E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int J Endocrinol. 2010;2010:759234. https://doi.org/10.1155/2010/759234 PMid:20628523 DOI: https://doi.org/10.1155/2010/759234
Syam A, Iskandar I, Qasim M, Kadir A, Usman AN. Identifying risk factors of prenatal depression among mothers in Indonesia. Enferm Clin. 2020;30(2):550-4. https://doi.org/10.1016/j.enfcli.2019.07.158 DOI: https://doi.org/10.1016/j.enfcli.2019.07.158
Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM Jr., et al. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 2017;22(4):527-36. https://doi.org/10.1038/mp.2016.120 PMid:27528460 DOI: https://doi.org/10.1038/mp.2016.120
Seth S, Lewis AJ, Galbally M. Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: A systematic literature review. BMC Pregnancy Childbirth. 2016;16:124. https://doi.org/10.1186/s12884-016-0915-y PMid:27245670 DOI: https://doi.org/10.1186/s12884-016-0915-y
Qin DD, Rizak J, Feng XL, Yang SC, Lü LB, Pan L, et al. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour. Sci Rep 2016;6:30187. https://doi.org/10.1038/srep30187 PMid:27443987 DOI: https://doi.org/10.1038/srep30187
Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev. 2012;1(4):533-57. https://doi.org/10.1002/wdev.35 DOI: https://doi.org/10.1002/wdev.35
Larsen CM, Grattan DR. Prolactin, neurogenesis, and maternal behaviors. Brain Behav Immun. 2012;26(2):201-9. https://doi.org/10.1016/j.bbi.2011.07.233 PMid:21820505 DOI: https://doi.org/10.1016/j.bbi.2011.07.233
Pang WW, Hartmann PE. Initiation of human lactation: Secretory differentiation and secretory activation. J Mammary Gland Biol Neoplasia. 2007;12(4):211-21. https://doi.org/10.1007/s10911-007-9054-4 PMid:18027076 DOI: https://doi.org/10.1007/s10911-007-9054-4
Bernard V, Young J, Chanson P, Binart N. New insights in prolactin: Pathological implications. Nat Rev Endocrinol. 2015;11(5):265-75. https://doi.org/10.1038/nrendo.2015.36 PMid:25781857 DOI: https://doi.org/10.1038/nrendo.2015.36
Radhakrishnan A, Raju R, Tuladhar N, Subbannayya T, Thomas JK, Goel R, et al. A pathway map of prolactin signaling. J Cell Commun Signal. 2012;6(3):169-73. https://doi.org/10.1080/08977190802273830 PMid:22684822 DOI: https://doi.org/10.1007/s12079-012-0168-0
Oliver CH, Watson CJ. Making milk. JAKSTAT. 2013;2(2):e23228. PMid:24058804 DOI: https://doi.org/10.4161/jkst.23228
Muck-Seler D, Pivac N, Mustapic M, Crncevic Z, Jakovljevic M, Sagud M. Platelet serotonin and plasma prolactin and cortisol in healthy, depressed and schizophrenic women. Psychiatry Res. 2004;127(3):217-26. https://doi.org/10.1016/j.psychres.2004.04.001 PMid:15296821 DOI: https://doi.org/10.1016/j.psychres.2004.04.001
Damiano JS, Wasserman E. Molecular pathways: Blockade of the PRLR signaling pathway as a novel antihormonal approach for the treatment of breast and prostate cancer. Clin Cancer Res. 2013;19(7):1644-50. https://doi.org/10.1158/1078-0432.ccr-12-0138 PMid:23515410 DOI: https://doi.org/10.1158/1078-0432.CCR-12-0138
Larsen CM, Grattan DR. Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology. 2010;151(8):3805-14. https://doi.org/10.1210/en.2009-1385 PMid:20484459 DOI: https://doi.org/10.1210/en.2009-1385
Syam A, Qasim M, Kadrianti E, Kadir A. Factor structure of the Edinburgh postnatal depression scale Indonesian version. Med Clín Práct. 2021;4:100238. https://doi.org/10.1016/j.mcpsp.2021.100238 DOI: https://doi.org/10.1016/j.mcpsp.2021.100238
Syam A, Iskandar I, Hendrarti W, Salam A. Prenatal depression and successful lactation. Med Clín Práct. 2021;4:100234. https://doi.org/10.1016/j.mcpsp.2021.100234 DOI: https://doi.org/10.1016/j.mcpsp.2021.100234
WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157-63. PMid:14726171 DOI: https://doi.org/10.1016/S0140-6736(03)15268-3
Gardner H, Kent JC, Prime DK, Lai CT, Hartmann PE, Geddes DT. Milk ejection patterns remain consistent during the first and second lactations. Am J Hum Biol. 2017;29(3):22960. https://doi.org/10.1002/ajhb.22960 PMid:28094880 DOI: https://doi.org/10.1002/ajhb.22960
Molyneaux E, Poston L, Ashurst-Williams S, Howard LM. Obesity and mental disorders during pregnancy and postpartum. Obstetr Gynecol. 2014;123(4):857-67. DOI: https://doi.org/10.1097/AOG.0000000000000170
Kent JC, Gardner H, Geddes DT. Breastmilk production in the first 4 weeks after birth of term infants. Nutrients. 2016;8(12):756. https://doi.org/10.3390/nu8120756 PMid:27897979 DOI: https://doi.org/10.3390/nu8120756
Kent JC. How breastfeeding works. J Midwifery Womens Health. 2007;52(6):564-70. PMid:17983993 DOI: https://doi.org/10.1016/j.jmwh.2007.04.007
Kent JC, Prime DK, Garbin CP. Principles for maintaining or increasing breast milk production. J Obstet Gynecol Neonatal Nurs. 2012;41(1):114-21. https://doi.org/10.1111/j.1552-6909.2011.01313.x PMid:22150998 DOI: https://doi.org/10.1111/j.1552-6909.2011.01313.x
Thayer ZM, Agustin Bechayda S, Kuzawa CW. Circadian cortisol dynamics across reproductive stages and in relation to breastfeeding in the Philippines. Am J Hum Biol. 2018;30(4):e23115. https://doi.org/10.1002/ajhb.23115 PMid:29479761 DOI: https://doi.org/10.1002/ajhb.23115
Ford LR, Willi SM, Hollis BW, Wright NM. Supression and recovery of the neonatal hypothalamic-pituitary-adrenal axis after prolonged dexamethasone therapy. J Pediatr. 1997;131(5):722-60. https://doi.org/10.1016/s0022-3476(97)70100-8 PMid:9403653 DOI: https://doi.org/10.1016/S0022-3476(97)70100-8
Heinrichs M, Meinlschmidt G, Neumann I, Wagner S, Kirschbaum C, Ehlert U, et al. Effects of suckling on hypothalamic-pituitary-adrenal axis responses to psychosocial stress in postpartum lactating women. J Clin Endocrinol Metab. 2001;86(10):4798-804. https://doi.org/10.1210/jcem.86.10.7919 PMid:11600543 DOI: https://doi.org/10.1210/jcem.86.10.7919
Simon CD, Adam EK, McKinney CO, Krohn JB, Shalowitz MU. Breastfeeding, bed-sharing, and maternal cortisol. Clin Pediatr (Phila). 2016;55(5):470-8. https://doi.org/10.1177/0009922815601981 PMid:26330120 DOI: https://doi.org/10.1177/0009922815601981
Baddock SA, Purnell MT, Blair PS, Pease AS, Elder DE, Galland BC. The influence of bed-sharing on infant physiology, breastfeeding and behaviour: A systematic review. Sleep Med Rev. 2019;43:106-17. https://doi.org/10.1016/j.smrv.2018.10.007 PMid:30553183 DOI: https://doi.org/10.1016/j.smrv.2018.10.007
Torner L, Toschi N, Nava G, Clapp C, Neumann ID. Increased hypothalamic expression of prolactin in lactation: Involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci. 2002;15(8):1381-9. https://doi.org/10.1046/j.1460-9568.2002.01965.x PMid:11994132 DOI: https://doi.org/10.1046/j.1460-9568.2002.01965.x
Augustine RA, Kokay IC, Andrews ZB, Ladyman SR, Grattan DR. Quantitation of prolactin receptor mRNA in the maternal rat brain during pregnancy and lactation. J Mol Endocrinol. 2003;31:221-32. https://doi.org/10.1677/jme.0.0310221 PMid:12914538 DOI: https://doi.org/10.1677/jme.0.0310221
Iskandar I. Gene prolactine receptor (PRLR) and signal transducer and activator of transcription 5 (STAT5) on milk production. Med Clín Práct. 2021;4:100223. https://doi.org/10.1016/j.mcpsp.2021.100223 DOI: https://doi.org/10.1016/j.mcpsp.2021.100223
Donner N, Bredewold R, Maloumby R, Neumann ID. Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci. 2007;25(6):1804-14. https://doi.org/10.1111/j.1460-9568.2007.05416.x PMid:17432967 DOI: https://doi.org/10.1111/j.1460-9568.2007.05416.x
Blyton DM, Sullivan CE, Edwards N. Lactation is associated with an increase in slow-wave sleep in women. J Sleep Res. 2002;11(4):297-303. https://doi.org/10.1046/j.1365-2869.2002.00315.x PMid:12464097 DOI: https://doi.org/10.1046/j.1365-2869.2002.00315.x
Isaac J, Matos-Pires A. Breastfeeding, prolactin release and sleep. J Sleep Res. 2018;11:1-26.
Romanò N, Yip SH, Hodson DJ, Guillou A, Parnaudeau S, Kirk S, et al. Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci. 2013;33:4424-33. https://doi.org/10.1523/jneurosci.4415-12.2013 PMid:23467359 DOI: https://doi.org/10.1523/JNEUROSCI.4415-12.2013
Grattan DR. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-prolactin axis. J Endocrinol. 2015;226(2):T101-22. https://doi.org/10.1530/joe-15-0213 PMid:26101377 DOI: https://doi.org/10.1530/JOE-15-0213
Schmidt KA, Palmer BA, Frye MA. Mixed mania associated with cessation of breastfeeding. Int J Bipolar Disord. 2016;4(1):18. https://doi.org/10.1186/s40345-016-0059-z PMid:27593209 DOI: https://doi.org/10.1186/s40345-016-0059-z
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Azniah Syam, Muhammad Qasim, Imelda Iskandar, Arisna Kadir (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0