Solid Dispersion of Tenoxicam – HPMC by Freeze-Drying: Solid State Properties, Dissolution Study, and Analgesic Activity in Mice

Authors

  • Salman Umar Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang 25163, Indonesia
  • Hendrizal Usman Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang 25163, Indonesia
  • Hulwa Salsabila Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang 25163, Indonesia https://orcid.org/0000-0001-9723-3027
  • Erizal Zaini Department of Pharmaceutics, Faculty of Pharmacy, Universitas Andalas, Padang 25163, Indonesia https://orcid.org/0000-0003-0108-4464

DOI:

https://doi.org/10.3889/oamjms.2022.9553

Keywords:

Analgesic, Dissolution rate, Freeze-drying, HPMC, Solid dispersion, Solubility, Tenoxicam

Abstract

AIM: The aim of this study was to prepare solid dispersion of tenoxicam with hydroxypropyl methylcellulose (HPMC) to improve solubility, dissolution rate, and in vivo analgesic activity.

METHODS: Solid dispersion of tenoxicam with HPMC was prepared using the freeze-drying technique in three ratios of drug to carrier (1:1, 1:2, and 2:1 w/w). The s olid-state properties of solid dispersion powders were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, and scanning electron microscope (SEM). Solubility and dissolution rate studies were conducted in an aqueous medium. Analgesic activity was evaluated using the writhing method.

RESULTS: Analysis of PXRD and DSC results indicated a decreased degree of crystallinity of tenoxicam in solid dispersion powders. Solid dispersion of tenoxicam exhibited a significant improvement in solubility and dissolution rate compared to intact tenoxicam, in line to the increment on the ratio of HPMC. Analgesic activity study revealed that solid dispersion 1:2 was more effective than intact tenoxicam.

CONCLUSIONS: This study concludes that the solid dispersion technique is a promising strategy to improve the solubility and dissolution rate of tenoxicam.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Venkatesh S, Lipper RA. Role of the development scientist in compound lead selection and optimization. J Pharm Sci. 2000;89(2):145-54. https://doi.org/10.1002/(sici)1520-6017(200002)89:2<145:aid-jps2>3.0.co;2-6 PMid: 10688744 DOI: https://doi.org/10.1002/(SICI)1520-6017(200002)89:2<145::AID-JPS2>3.0.CO;2-6

Kalepu S, Nekkanti V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442-53. https://doi.org/10.1016/j.apsb.2015.07.003 PMid: 26579474 DOI: https://doi.org/10.1016/j.apsb.2015.07.003

Nyamba I, Lechanteur A, Semdé R, Evrard B. Physical formulation approaches for improving aqueous solubility and bioavailability of ellagic acid: A review. Eur J Pharm Biopharm. 2021;159:198-210. https://doi.org/10.1016/j.ejpb.2020.11.004 PMid: 33197529 DOI: https://doi.org/10.1016/j.ejpb.2020.11.004

van Hoogevest P, Liu X, Fahr A. Drug delivery strategies for poorly water-soluble drugs: The industrial perspective. Expert Opin Drug Deliv. 2011;8(11):1481-500. https://doi.org/10.1517/17425247.2011.614228 PMid: 21895540 DOI: https://doi.org/10.1517/17425247.2011.614228

Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics. 2018;10(3):74-107. https://doi.org/10.3390/pharmaceutics10030074 PMid: 29937483 DOI: https://doi.org/10.3390/pharmaceutics10030074

Bradshaw D, Cashin CH, Kennedy AJ, Roberts NA. Pharmacological and biochemical activities of Tenoxicam (Ro 12-0068), a new non-steroidal anti-inflammatory drug. Agents Actions. 1984;15(5-6):569-77. https://doi.org/10.1007/bf01966776 PMid: 6099694 DOI: https://doi.org/10.1007/BF01966776

Hsu HW, Cheng YJ, Chen LK, Wang YP, Lin CJ, Lee CN, et al. Differential analgesic effect of tenoxicam on the wound pain and uterine cramping pain after cesarean section. Clin J Pain. 2003;19(1):55-8. https://doi.org/10.1097/00002508-200301000-00007 PMid: 12514457 DOI: https://doi.org/10.1097/00002508-200301000-00007

Yeh MK, Chang LC, Chiou AHJ. Improving tenoxicam solubility and bioavailability by cosolvent system. AAPS PharmSciTech. 2009;10(1):166-71. https://doi.org/10.1208/s12249-009-9189-2 PMid: 19224373 DOI: https://doi.org/10.1208/s12249-009-9189-2

Shakeel F, Haq N, Alanazi FK, Alsarra IA. Solubility and thermodynamics of tenoxicam in (PEG-400 + water) binary solvent systems at different temperatures. J Mol Liq. 2016;213:221-7. https://doi.org/10.1016/j.molliq.2015.10.057 DOI: https://doi.org/10.1016/j.molliq.2015.10.057

Bolla G, Sanphui P, Nangia A. Solubility advantage of tenoxicam phenolic cocrystals compared to salts. Cryst Growth Des. 2013;13(5):1988-2003. https://doi.org/10.1021/cg4000457 DOI: https://doi.org/10.1021/cg4000457

Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm. 2011;420(1):1-10. https://doi.org/10.1016/j.ijpharm.2011.08.032 PMid: 21884771 DOI: https://doi.org/10.1016/j.ijpharm.2011.08.032

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304-16. https://doi.org/10.1016/j.ajps.2014.05.005 DOI: https://doi.org/10.1016/j.ajps.2014.05.005

Patel JR, Carlton RA, Yuniatine F, Needham TE, Wu L, Vogt FG. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution. J Pharm Sci. 2012;101(2):641-63. https://doi.org/10.1002/jps.22800 PMid: 22095696 DOI: https://doi.org/10.1002/jps.22800

Alladi S, Shastri NR. Semi solid matrix formulations of meloxicam and tenoxicam: an in vitro and in vivo evaluation. Arch Pharm Res. 2015;38(5):801-12. https://doi.org/10.1007/ s12272-014-0396-3 PMid: 24752862 DOI: https://doi.org/10.1007/s12272-014-0396-3

El-Gazayerly ON. Characterization and evaluation of tenoxicam coprecipitates. Drug Dev Ind Pharm. 2000;26(9):925-30. https://doi.org/10.1081/ddc-100101319 PMid: 10914316 DOI: https://doi.org/10.1081/DDC-100101319

Larrucea E, Arellano A, Santoyo S, Ygartua P. Study of the complexation behavior of tenoxicam with cyclodextrins in solution: Improved solubility and percutaneous permeability. Drug Dev Ind Pharm. 2002;28:245-52. https://doi.org/10.1081/ddc-120002840 PMid: 12026217 DOI: https://doi.org/10.1081/DDC-120002840

Aigner Z, Kézsmárki Á, Kata M, Novák C, Erös I. Investigation of tenoxicam and γ-cyclodextrin binary and ternary complexes. J Incl Phenom Macrocycl Chem. 2002;42(3):227-33. https://doi.org/10.1023/a:1016011119666 DOI: https://doi.org/10.1023/A:1016011119666

Patel JR, Carlton RA, Needham TE, Chichester CO, Vogt FG. Preparation, structural analysis, and properties of tenoxicam cocrystals. Int J Pharm. 2012;436:685-706. https://doi.org/10.1016/j.ijpharm.2012.07.034 PMid: 22841852 DOI: https://doi.org/10.1016/j.ijpharm.2012.07.034

Vogel HG, editor. Analgesic, anti-inflammatory, and anti-pyretic activity. In: Drug Discovery and Evaluation: Pharmacological Assays. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 983-1116. https://doi.org/10.1007/978-3-540-70995-4_9 DOI: https://doi.org/10.1007/978-3-540-70995-4_9

Zaini E, Wahyuni YS, Halim A, Yuliandra Y. Preparation of eutectic mixture of ketoprofen and nicotinamide for enhanced dissolution rate. Int J Pharm Sci Rev Res. 2015;35(1):161-4.

Zaini E, Nisak RK, Utami RD, Fitriani L, Ismed F. Effect of milling on physicochemical properties of usnic acid isolated from usnea sp. Orient J Chem. 2017;33(6):3031-6. https://doi.org/10.13005/ojc/330641 DOI: https://doi.org/10.13005/ojc/330641

Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397-404. https://doi.org/10.1023/a:1007516718048 PMid: 10870982 DOI: https://doi.org/10.1023/A:1007516718048

De Villiers MM, Wurster D, Watt J Van der, Ketkar A. X-Ray powder diffraction determination of the relative amount of crystalline acetaminophen in solid dispersions with polyvinylpyrrolidone. Int J Pharm. 1998;163(1-2):219-24. https://doi.org/10.1016/s0378-5173(97)00367-0 DOI: https://doi.org/10.1016/S0378-5173(97)00367-0

Fitriani L, Afriyanti I, Afriyani A, Ismed F, Zaini E. Solid dispersion of usnic acid–HPMC 2910 prepared by spray drying and freeze drying techniques. Orient J Chem. 2018;34(4):2083-8. https://doi.org/10.13005/ojc/3404048 DOI: https://doi.org/10.13005/ojc/3404048

Setyawan D, Fadhil AA, Juwita D, Yusuf H, Sari R. Enhancement of solubility and dissolution rate of quercetin with solid dispersion system formation using hydroxypropyl methyl cellulose matrix. Thai J Pharm Sci. 2017;41(3):112-6.

Ishihara S, Hattori Y, Otsuka M, Sasaki T. Cocrystal formation through solid-state reaction between ibuprofen and nicotinamide revealed using THz and IR spectroscopy with multivariate analysis. Crystals. 2020;10(9):760. https://doi.org/10.3390/cryst10090760 DOI: https://doi.org/10.3390/cryst10090760

Widjaja B, Setyawan D, Moechtar J. Development of piroxicam orally disintegrating tablets by freeze drying method. Int J Pharm Pharm Sci. 2013;5(3):795-798.

Haser A, Zhang F. New strategies for improving the development and performance of amorphous solid dispersions. AAPS PharmSciTech. 2018;19(3):978-90. https://doi.org/10.1208/s12249-018-0953-z PMid: 29340977 DOI: https://doi.org/10.1208/s12249-018-0953-z

Gao Y, Glennon B, He Y, Donnellan P. Dissolution kinetics of a BCS Class II active pharmaceutical ingredient: Diffusion-based model validation and prediction. ACS Omega. 2021;6(12):8056-67. https://doi.org/10.1021/acsomega.0c05558 PMid: 33817465 DOI: https://doi.org/10.1021/acsomega.0c05558

Yuliandra Y, Fitriani L, Kurniawan R, Yasardi F, Zaini E. Solid dispersions of famotidine: Physicochemical properties and in vivo comparative study on the inhibition of hyperacidity. ChemistrySelect. 2020;5(29):9218-25. https://doi.org/10.1002/slct.202001796 DOI: https://doi.org/10.1002/slct.202001796

LaFountaine JS, Prasad LK, Brough C, Miller DA, McGinity JW, Williams RO 3rd. Thermal processing of PVP- and HPMC-based amorphous solid dispersions. AAPS PharmSciTech. 2016;17(1):120-32. https://doi.org/10.1208/s12249-015-0417-7 PMid: 26729526 DOI: https://doi.org/10.1208/s12249-015-0417-7

Jagdale S, Dangat Y, Kuchekar B. Improvement of dissolution rate of Ramipril by solid dispersion technique and devlopement of buccal patch. Int J Pharm Pharm Sci. 2012;4 Suppl 5:309-18.

Mauludin R, Pamudji JS, Ruyanti D. Dissolution improvement of ketoprofen tablets by solid dispersion method. Asian J Pharm Clin Res. 2011;4:119-24.

Bhuiyan MM, Bhuiya NM, Hasan MN, Nahar UJ. In vivo and in silico evaluation of antinociceptive activities of seed extract from the Holarrhena antidysenterica plant. Heliyon. 2020;6(5):e03962. https://doi.org/10.1016/j.heliyon.2020.e03962 PMid: 32426548 DOI: https://doi.org/10.1016/j.heliyon.2020.e03962

Downloads

Published

2022-04-25

How to Cite

1.
Umar S, Usman H, Salsabila H, Zaini E. Solid Dispersion of Tenoxicam – HPMC by Freeze-Drying: Solid State Properties, Dissolution Study, and Analgesic Activity in Mice. Open Access Maced J Med Sci [Internet]. 2022 Apr. 25 [cited 2024 Apr. 18];10(A):800-6. Available from: https://oamjms.eu/index.php/mjms/article/view/9553

Funding data