Slow-type Interval Training and Ethanol Extract of Sarang Semut (Myrmecodia pendans) can Improve the Early Lesions of Atherosclerosis in Type-2 Diabetes Mellitus Rats
DOI:
https://doi.org/10.3889/oamjms.2022.9559Keywords:
Diabetes, Foam cell, Interval training, Myrmecodia pendans, RatsAbstract
BACKGROUND: Macrovascular complications in diabetes mellitus (DM) are the most common cause of death in DM patients. The formation of foam cells on the endothelium is an early marker of atherosclerotic lesions. Physical exercise and antidiabetic agents are an integral part of the management of DM.
AIM: The purpose of this study was to analyze the synergistic effect of slow-type interval training (STIT) and ethanol extract of Sarang Semut (EESS) on the number of foam cells in type-2 DM (T2DM) rats.
METHODS: A total of 25 male Wistar rats were induced into a type-2 DM model with a high-fat diet and low-dose Streptozotocin injection. Rats were divided into four groups consisting of G1 (T2DM/T2DM), G2 (T2DM + STIT), G3 (T2DM + EESS), and G4 (T2DM + combination of STIT and EESS). The slow-type interval training exercise is done by running on a treadmill. Ethanol extract of Sarang Semut was given at a dose of 400 mg/kg BW for 8 weeks. Histopathological examination was performed with Hematoxylin-Eosin staining to examine the number of foam cells in the aorta. Ethical approval was obtained from the Health Research Ethics Committee, Faculty of Medicine, Universitas Sumatera Utara.
RESULTS: The results showed that there were differences in the average number of foam cells in each treatment group. The highest number of foam cells was found in the T2DM group. The average number of foam cells was the least in the group that received a combination of STIT and EESS which was statistically different from the group that received STIT (K2) and the group that received EESS (K3).
CONCLUSION: It can be concluded that the combination of slow-type interval training and ethanol extract of Sarang Semut can reduce the number of foam cells in T2DM rats.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Zingg JM, Vlad A, Ricciarelli R. Oxidized LDLs as signaling molecules. Antioxidants (Basel). 2021;8(10):1184. https://doi.org/10.3390/ANTIOX10081184 PMid:34439432 DOI: https://doi.org/10.3390/antiox10081184
Liu JX, Zhu L, Li PJ, Li N, Xu YB. Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with Type 2 diabetes: A systematic review and meta-analysis. Aging Clin Exp Res. 2019;31(5):575-93. https://doi.org/10.1007/s40520-018-1012-z PMid:30097811 DOI: https://doi.org/10.1007/s40520-018-1012-z
Machrina Y, Damanik HA, Purba A, Lindarto D. Effect various type of exercise to Insr gene expression, skeletal muscle insulin receptor and insulin resistance on diabetes mellitus Type-2 model rats. Int J Health Sci. 2018;6(4):50-6. https://doi.org/10.15640/ijhs.v6n4a8
Poblete-Aro C, Russell-Guzmán J, Parra P, Soto-Muñoz M, Villegas-González B, Cofré-Bolados C, et al. Exercise and oxidative stress in Type 2 diabetes mellitus. Rev Med Chil. 2018;146(3);362-72. https://doi.org/10.4067/s0034-98872018000300362 PMid:29999107 DOI: https://doi.org/10.4067/s0034-98872018000300362
Yang J, Cao RY, Gao R, Mi Q, Dai Q, Zhu F. Physical exercise is a potential ‘medicine’ for atherosclerosis. Adv Exp Med Biol. 2017;999:269-86. https://doi.org/10.1007/978-981-10-4307-9_15 PMid:29022268 DOI: https://doi.org/10.1007/978-981-10-4307-9_15
Engida AM, Kasim NS, Tsigie YA, Ismadji S, Huynh LH, Ju YH. Extraction, identification and quantitative HPLC analysis of flavonoids from sarang semut (Myrmecodia Pendan). Ind Crops Prod. 2013;41(1):392-6. https://doi.org/10.1016/j.indcrop.2012.04.043 DOI: https://doi.org/10.1016/j.indcrop.2012.04.043
Achmad H, Supriatno, Singgih MF, Hendrastuti H. Akt signal transduction pathways and nuclear factor-kappa B (NF-kB) transcription as a molecular target of oral tongue squamous cell carcinoma (SP-C1) using papua’s anthill plant (Myrmecodia pendans). Pak J Biol Sci. 2016;19(8-9):323-30. https://doi.org/10.3923/pjbs.2016.323.330 PMid:29023018 DOI: https://doi.org/10.3923/pjbs.2016.323.330
Gartika M, Pramesti HT, Kurnia D, Satari MH. A terpenoid isolated from sarang semut (Myrmecodia pendans) bulb and its potential for the inhibition and eradication of Streptococcus Mutans biofilm. BMC Complement Altern Med. 2018;18(1):151. https://doi.org/10.1186/s12906-018-2213-x PMid:29739390 DOI: https://doi.org/10.1186/s12906-018-2213-x
Zhou Y, Jiang Z, Lu H, Xu Z, Tong R, Shi J, et al. Recent advances of natural polyphenols activators for keap1-nrf2 signaling pathway. Chem Biodivers. 2019;16(11):e1900400. https://doi.org/10.1002/cbdv.201900400 PMid:31482617 DOI: https://doi.org/10.1002/cbdv.201900400
Widyawati T, Pase MA, Daulay M, Sumantri IB, Yusoff NA. Evaluation of Myrmecodia Pendans water extracts on hematology profiles, liver, kidney function and malondialdehyde level in healthy volunteer. Pharmacogn J. 2020;12(6):1489-93. https://doi.org/10.5530/pj.2020.12.204 DOI: https://doi.org/10.5530/pj.2020.12.204
Zein EM, Lubis VM, Purba A. Efek interval training terhadap indeks lee, kadar adiponektin, dan IL-6 pada tikus model obesitas. Maj Kedokt Bandung. 2017;49(1):15-21. https://doi.org/10.15395/mkb.v49n1.983 DOI: https://doi.org/10.15395/mkb.v49n1.983
Sujono TA, Nurhaini S, Sutrisna E, Setiyani S, Susanti E. Effectiveness of Ethanolic Extract of Sarang Semut (Myrmecodia Tuberosa (non jack) bi.) to Decrease Blood glucose Levels in Diabetic Rats Induced by Alloxan. International Conference ICB Pharma; 2015. p. 129-36. Available from: https://www.publikasiilmiah.ums.ac.id/handle/11617/6026?show=full [Last accessed on 2019 Apr 22].
Yuniarto A, Kurnia I, Ramadhan M. Antiobesity effect of ethanolic extract of jasmine flowers (Jasminumsambac (l) Ait) in high-fat diet induced mice : Potent inhibitor of pancreatic lipase enzyme. Int J Adv Pharm Biol Chem. 2015;4(1):18-22.
Shiyan S, Herlina H, Bella AM. Antiobesity and antihypercholesterolemic effects of white tea (Camellia sinensis) infusion on high-fat diet induced obese rats. Pharmaciana. 2017;7(2);278-88. https://doi.org/10.12928/pharmaciana. v7i2.6622 DOI: https://doi.org/10.12928/pharmaciana.v7i2.6622
Vargas-Mendoza N, Morales-González A, Madrigal-Santillán EO, Madrigal-Bujaidar E, Álvarez-González I, García-Melo LF, et al. Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants (Basel). 2019;8(6):196. https://doi.org/10.3390/antiox8060196 PMid:31242588 DOI: https://doi.org/10.3390/antiox8060196
David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ ARE pathway and oxidative stress as a therapeutic target in Type II diabetes mellitus. J Diabetes Res. 2017;2017:4826724. https://doi.org/10.1155/2017/4826724 PMid:28913364 DOI: https://doi.org/10.1155/2017/4826724
Ooi BK, Goh BH, Yap WH. Oxidative stress in cardiovascular diseases: Involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation. Int J Mole Sci. 2017;18(11):2336. https://doi.org/10.3390/ijms18112336 PMid:29113088 DOI: https://doi.org/10.3390/ijms18112336
Pinto PR, Rocco DD, Okuda LS, Machado-Lima A, Castilho G, Da Silva KS, et al. Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta. Lipids Health Dis. 2015;14(1):109. https://doi.org/10.1186/S12944-015-0093-3 PMid:26377330 DOI: https://doi.org/10.1186/s12944-015-0093-3
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Milahayati Daulay, Dharma Lindarto, Rosita Juwita Sembiring, Yetty Machrina, Ambrocius Purba, Delfitri Munir, Arlinda Sari Wahyuni, Zulham Yamamoto (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0