Association of SCN1A Gene Polymorphism with Phenytoin Response in Patients with Epilepsy: Relevance of Stratification by the History of Febrile Seizure
DOI:
https://doi.org/10.3889/oamjms.2022.9583Keywords:
SCN1A polymorphism, rs3812718, Phenytoin, Responsiveness, Febrile seizureAbstract
AIM: The SCN1A gene encodes the NaV1.1 sodium channel in the central nervous system that serves as the target for phenytoin. Our study aimed to investigate the association of SCN1A polymorphism (SNP rs3812718) with phenytoin response.
MATERIALS AND METHODS: A total of 120 epileptic patients who had received phenytoin for at least 1 year were enrolled in the study and genotyped using the TaqMan assay. They were classified into phenytoin-responsive (n = 62) and phenytoin unresponsive groups (n = 58). Patients were also stratified according to the history of febrile seizure (24 in the febrile seizure subgroup; 96 patients in the no history of febrile seizure subgroup) and epilepsy etiology (47 in idiopathic; 73 in the symptomatic + cryptogenic subgroup).
RESULTS: The frequency of AA (19% vs. 11.3%) and AG genotypes (43.1% vs. 40.3%) was found to be more frequent in phenytoin unresponsive. GG genotypes dominated in the phenytoin responsive group (37.9% vs. 48.4%) but were not statistically significant (p > 0.05). We identified two variables associated with phenytoin response: the etiology of epilepsy (p = 0.012) and history of febrile seizure (0.014). A significant positive association between the rs3812718 genotype and phenytoin response was found when patients were stratified by a history of febrile seizures. In patients without a history of febrile seizures, the AA genotype had a higher risk of phenytoin unresponsiveness than the GG genotype (p = 0.048; OR 3.73, 95% CI: 1.01–13.78).
CONCLUSION: There was no significant association between the rs3812718 polymorphism and phenytoin responsiveness in patients with epilepsy. In the patients without a history of febrile seizure subgroup, AA increased the risk of phenytoin unresponsiveness compared to the GG genotype.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Brodie MJ, Barry SJ, Bamagous GA, Norrie JD, Kwan P. Patterns of treatment response in newly diagnosed epilepsy. Neurology. 2012;78(20):1548-54. https://doi.org/10.1212/WNL.0b013e3182563b19 PMid:22573629 DOI: https://doi.org/10.1212/WNL.0b013e3182563b19
Thomas SV, Koshy S, Nair CR, Sarma SP. Frequent seizures and polytherapy can impair quality of life in persons with epilepsy. Neurol India. 2005;53(1):46-50. https://doi.org/10.4103/0028-3886.15054 PMid:15805655 DOI: https://doi.org/10.4103/0028-3886.15054
Sanchez MB, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizan EM, et al. Genetic factors associated with drug-resistence of epilepsy: Relevance of stratification by patient age and aetiology of epilepsy. Seizure. 2010;19(2):93-101. https://doi.org/10.1016/j.seizure.2009.12.004 PMid:20064729 DOI: https://doi.org/10.1016/j.seizure.2009.12.004
Poduri A, Lowenstein D. Epilepsy genetics-past, present, and future. Curr Opin Genet Dev. 2011;21(3):325-32. https://doi.org/10.1016/j.gde.2011.01.005 PMid:21277190 DOI: https://doi.org/10.1016/j.gde.2011.01.005
Sisodiya SM, Marini C. Genetics of antiepileptic drug resistence. Curr Opin Neurol. 2009;22(2):150-6. https://doi.org/10.1097/ WCO.0b013e32832923ec PMid:19532038 DOI: https://doi.org/10.1097/WCO.0b013e32832923ec
Haerian BS, Baum L, Kwan P, Tan HJ, Raymond AA, Mohamed Z. SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to antiepileptic drugs: A multicenter cohort study and meta-analysis. Pharmacogenetics. 2013;14(10):1153-66. https://doi.org/10.2217/pgs.13.104 PMid:23859570 DOI: https://doi.org/10.2217/pgs.13.104
Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol. 2010;9(4):413-24. https://doi.org/10.1016/S1474-4422(10)70059-4 PMid:20298965 DOI: https://doi.org/10.1016/S1474-4422(10)70059-4
Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci USA. 2005;102(15):5507-12. https://doi.org/10.1073/pnas.0407346102 PMid:15805193 DOI: https://doi.org/10.1073/pnas.0407346102
Tate SK, Singh R, Hung CC, Tai JJ, Depondt C, Cavalleri GL, et al. A common polymorphism in the SCN1A gene associates with phenytoin serum levels at maintenance dose. Pharmacogenet Genomics. 2006;16(10):721-6. https://doi.org/10.1097/01.fpc.0000230114.41828.73 PMid:17001291 DOI: https://doi.org/10.1097/01.fpc.0000230114.41828.73
Catterall WA. Voltage-gated sodium channels at 60: Structure, function, and pathophysiology. J Physiol. 2012;590(11):2577-89. https://doi.org/10.1113/jphysiol.2011.224204 PMid:22473783 DOI: https://doi.org/10.1113/jphysiol.2011.224204
Osaka H, Ogiwara I, Mazaki E, Okamura N, Yamashita S, Iai M, et al. Patients with a sodium channel α _1 gene mutation show wide phenotypic variation. Epilepsy Res. 2007;75(1):46-51. https://doi.org/10.1016/j.eplepsyres.2007.03.018 PMid:17507202 DOI: https://doi.org/10.1016/j.eplepsyres.2007.03.018
Heinzen EL, Yoon W, Tate SK, Sen A, Wood NW, Sisodiya SM, et al. Nova2 interacts with a cis-acting polymorphism to influence the proportions of drug-responsive splice variants of SCN1A. Am J Hum Genet. 2007;80(5):876-3. https://doi.org/10.1086/516650 PMid:17436242 DOI: https://doi.org/10.1086/516650
Thompson CH, Kahlig KM, George AL Jr. SCN1A splice variants exhibit divergent sensitivity to commonly used antiepileptic drugs. Epilepsia. 2011;52(5):1000-9. https://doi.org/10.1111/j.1528-1167.2011.03040.x PMid:21453355 DOI: https://doi.org/10.1111/j.1528-1167.2011.03040.x
Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistence in epilepsy. Brain. 2006;129(Pt 1):18-35. https://doi.org/10.1093/brain/awh682 PMid:16317026 DOI: https://doi.org/10.1093/brain/awh682
Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K. Association between SCN1A polymorphism and carbamazepine-resistant epilepsy. Br J Clin Pharmacol. 2008;66(2):304-7. https://doi.org/10.1111/j.1365-2125.2008.03203.x PMid:18489610 DOI: https://doi.org/10.1111/j.1365-2125.2008.03203.x
Zhou BT, Zhou QH, Yin JY, Li GL, Xu XJ, Qu J, et al. Comprehensive analysis of the association of SCN1A gene polymorphisms with the retention rate of carbamazepine following monotherapy for new-onset focal seizures in the Chinese Han population. Clin Exp Pharmacol Physiol. 2012;39(4):379-84. https://doi.org/10.1111/j.1440-1681.2012.05680.x PMid:22292851 DOI: https://doi.org/10.1111/j.1440-1681.2012.05680.x
Manna I, Gambardella A, Bianchi A, Striano P, Tozzi R, Aguglia U, et al. A functional polymorphism in the SCN1A gene does not influence antiepileptic drug responsiveness in Italian patients with focal epilepsy. Epilepsia. 2011;52(5):e40-4. https://doi.org/10.1111/j.1528-1167.2011.03097.x PMid:21561445 DOI: https://doi.org/10.1111/j.1528-1167.2011.03097.x
Yun W, Zhang F, Hu C, Luo X, Xue P, Wang J, et al. Effects of EPHX1, SCN1A and CYP3A4 genetic polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy Res. 2013;107(3):231-7. https://doi.org/10.1016/j.eplepsyres.2013.09.011 PMid:24125961 DOI: https://doi.org/10.1016/j.eplepsyres.2013.09.011
Kumari R, Lakhan R, Kumar S, Garg RK, Misra UK, Kalita J, et al. SCN1A IVS5-91G>A polymorphism is associated with susceptibility to epilepsy but not with drug responsiveness. Biochimie. 2013;95(6):1350-3. https://doi.org/10.1016/j.biochi.2013.02.006 PMid:23466530 DOI: https://doi.org/10.1016/j.biochi.2013.02.006
Sterjev Z, Kiteva G, Cvetkovska E, Petrov I, Kuzmanovski I, Ribarska T, et al. Influence of the SCN1A IVS5N+5 G>A polymorphism on therapy with carbamazepine for epilepsy. Balkan J Med Genet. 2012;15(1):19-24. https://doi.org/10.2478/v10034-012-0003-1 PMid:24052718 DOI: https://doi.org/10.2478/v10034-012-0003-1
Baghel R, Grover S, Kaur H, Jajodia A, Rawat C, Srivastava A, et al. Evaluating the role of genetic variants on first-line antiepileptic drug response in North India: Significance of SCN1A and GABRA1 gene variants in phenytoin monotherapy and its serum drug levels. CNS Neurosci Ther. 2016;22(9):740-7. https://doi.org/10.1111/cns.12570 PMid:27245092 DOI: https://doi.org/10.1111/cns.12570
Hitiris N, Mohanraj R, Norrie J, Sills GJ, Brodie MJ. Predictors of pharmacoresistant epilepsy. Epilepsy Res. 2007;75(2-3):192-6. https://doi.org/10.1016/j.eplepsyres.2007.06.003 PMid:17628429 DOI: https://doi.org/10.1016/j.eplepsyres.2007.06.003
Kwong KL, Sung WY, Wong SN, So KT. Early predictors of medical intractability in childhood epilepsy. Pediatr Neurol. 2003;29(1):46-52. https://doi.org/10.1016/s0887-8994(03)00028-6 PMid:13679121 DOI: https://doi.org/10.1016/S0887-8994(03)00028-6
Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of drug-resistant epilepsy: A systematic review and meta analysis. Epilepsia. 2018;59(12):2179-93. https://doi.org/10.1111/epi.14596 PMid:30426482 DOI: https://doi.org/10.1111/epi.14596
Xue-Ping W, Hai-Jiao W, Li-Na Z, Xu D, Ling L. Risk factors for drug-resistant epilepsy. Medicine (Baltimore). 2019;98(30):e16402. https://doi.org/10.1097/MD.0000000000016402 PMid:31348240 DOI: https://doi.org/10.1097/MD.0000000000016402
Roy PL, Ronquillo LH, Ladino LD, Tellez-Zenteno JF. Risk factors associated with drug resistant focal epilepsy in adults: A case control study. Seizure. 2019;73:46-50. https://doi.org/10.1016/j.seizure.2019.10.020 PMid:31734466 DOI: https://doi.org/10.1016/j.seizure.2019.10.020
Downloads
Published
How to Cite
License
Copyright (c) 2022 Atitya Fithri Khairani, Sri Sutarni, Eti Nurwening Sholikhah, Rusdy Ghazali Malueka, Audiza Luthffia, Amelia Nur Vidyanti (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0