Association between Blood Copper Levels and the Incidence of Ischemic Heart Disease

Authors

  • Meriza Martineta Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0002-8741-0007
  • Yasmine Siregar Department of Cardiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Herwindo Ahmad Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia https://orcid.org/0000-0002-9755-7918

DOI:

https://doi.org/10.3889/oamjms.2022.9592

Keywords:

Blood copper level, Diet, Ischemic heart disease

Abstract

Background: Ischemic heart disease is one of the interrelated disease amongst cardiovascular disease group. Pathophysiological model of ischemic heart disease and myocardial ischemia are caused by obstructive atherosclerotic plaque, which involves the narrowing of small blood vessels that oxygenate the heart muscle by the build-up of plaque. Diet plays an important role in ischemic heart disease. Copper, an essential trace metal micronutrient, is required for myocardial angiogenesis action. Copper deficiency leads to cardiac mitochondrial structural defect and interference in oxidative phosphorylation.

Aims: This study aims to examine the association between blood copper levels amd the incidence of ischemic heart disease.

Methods: A total of 30 patients in cardiovascular clinic in Universitas Sumatera Utara Hospital in Medan, Indonesia from September 2021 until January 2022 were included in this cross-sectional study, with descriptive analytics. Demographic data, smoking behavior, supplement consumption, anthropometry measurements, body mass index, medical history were collected. Food frequency questionnaire (semiquantitative FFQ) was used to obtain food recall data. Blood level of copper were analysed in Prodia Clinical Laboratory.

Results: Out of 30 patients in this study, 70% were male with a mean age of 60.6 years old. Research subjects who had risk factor of smoking were as much as 33.3%. Comorbidities such as dyslipidemia and diabetes mellitus were apparent, which were 63.3% and 30%, respectively. Sixty percent of the subjects were sedentary with mean body mass index 25.9 kg/m2. Median level of copper consumed daily was 1400 mcg/day and mean blood copper level was 1034,5 mg/L. Based on the blood copper level analysis of the subjects, we found  an insignificant negative correlation between blood copper level with the incidence of ischemic heart disease (r = -0.050; p <0.795).

Conclusion: This study found no association between blood copper levels and the incidence of ischemic heart disease.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

The Global Burden of Disease: 2004 Update; 2008. Available from: https://www.who.int/evidence/bod [Last accessed on 2022 Jan 03].

World Development Indicators; 2012. Available from: http://www.data.worldbank.org [Last accessed on 2022 Jan 03].

Lozano R, Naghavi M, Foreman K, Stephen L, Kenji S, Victor A, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095. DOI: https://doi.org/10.1016/S0140-6736(12)61728-0

Mahan LK, Raymond JL. Krause’s Food and the Nutrition Care Process. 14th ed. St. Louis: Elsevier; 2017.

Aliabadi H. A deleterious interaction between copper deficiency and sugar ingestion may be the missing link in heart disease. Med Hypotheses. 2008;70(6):1163-6. https://doi.org/10.1016/j.mehy.2007.09.019 PMid:18178013 DOI: https://doi.org/10.1016/j.mehy.2007.09.019

Goswami SK, Das DK. Oxygen sensing, cardiac ischemia, HIF-1alpha and some emerging concepts. Curr Cardiol Rev. 2010;6(4):265-73. https://doi.org/10.2174/157340310793566136 PMid:22043202 DOI: https://doi.org/10.2174/157340310793566136

Tekin D, Dursun AD, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin. 2010;31(9):1085-94. https://doi.org/10.1038/aps.2010.132 PMid:20711226 DOI: https://doi.org/10.1038/aps.2010.132

Eckle T, Kohler D, Lehmann R, El Kasmi K, Eltzschig HK. Hypoxia-inducible factor-1 is central to cardioprotection: A new paradigm for ischemic preconditioning. Circulation. 2008;118(2):166-75. https://doi.org/10.1161/circulationaha.107.758516 PMid:18591435 DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.758516

Bautista L, Castro MJ, Lopez-Barneo J, Castellano A. Hypoxia inducible factor-2alpha stabilization and maxi-K? Channel beta1-subunit gene repression by hypoxia in cardiac myocytes: Role in preconditioning. Circ Res. 2009;104(12):1364-72. https://doi.org/10.1161/circresaha.108.190645 PMid:19461047 DOI: https://doi.org/10.1161/CIRCRESAHA.108.190645

Arab A, Kuemmerer K, Wang J, Bode C, Hehrlein C. Oxygenated perfluorochemicals improve cell survival during reoxygenation by pacifying mitochondrial activity. J Pharmacol Exp Ther. 2008;325(2):417-24. https://doi.org/10.1124/jpet.107.133710 PMid:18305017 DOI: https://doi.org/10.1124/jpet.107.133710

Jurgensen JS, Rosenberger C, Wiesener MS, Warnecke C, Horstrup JH, Grafe M, et al. Persistent induction of HIF- 1alpha and -2alpha in cardiomyocytes and stromal cells of ischemic myocardium. FASEB J. 2004;18:1415-7. https://doi.org/10.1096/fj.04-1605fje DOI: https://doi.org/10.1096/fj.04-1605fje

Meeson AP, Radford N, Shelton JM, Mammen PP, DiMaio JM, Hutcheson K, et al. Adaptive mechanisms that preserve cardiac function in mice without myoglobin. Circulation Res. 2001;88(7):713-20. https://doi.org/10.1161/hh0701.089753 PMid:11304494 DOI: https://doi.org/10.1161/hh0701.089753

Shohet RV, Garcia JA. Keeping the engine primed: HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia. J Mol Med (Berlin, Germany). 2007;85(12):1309-15. https://doi.org/10.1007/s00109-007-0279-x PMid:18026917 DOI: https://doi.org/10.1007/s00109-007-0279-x

Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1 -mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177-85. https://doi.org/10.1016/j.cmet.2006.02.002 PMid:16517405 DOI: https://doi.org/10.1016/j.cmet.2006.02.002

Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res. 2010;86(2):236-42. https://doi.org/10.1093/cvr/cvq045 PMid:20164116 DOI: https://doi.org/10.1093/cvr/cvq045

Liu Y, Miao J. An emerging role of defective copper metabolism in heart disease. Nutrients. 2022;14(3):700. https://doi.org/10.3390/nu14030700 PMid:35277059 DOI: https://doi.org/10.3390/nu14030700

Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother. 2003;57(9):386-98. https://doi.org/10.1016/s0753-3322(03)00012-x PMid:14652164 DOI: https://doi.org/10.1016/S0753-3322(03)00012-X

Davis GK, Mertz W. Trace Elements in Human and Animal Nutrition. New York: Academic Press; 1987. p. 301-64. https://doi.org/10.1016/b978-0-08-092468-7.50014-4 DOI: https://doi.org/10.1016/B978-0-08-092468-7.50014-4

Fell BF, Farquharson C, Riddoch GI. Kidney lesions in copper-deficient rats. J Comparat Pathol. 1987;97(2):187-96. https://doi.org/10.1016/0021-9975(87)90039-9 PMid:3597851 DOI: https://doi.org/10.1016/0021-9975(87)90039-9

Goodman JR, Warshaw JB, Dallman PR. Cardiac hypertrophy in rats with iron and copper deficiency: Quantitative contribution of mitochondrial enlargement. Pediatr Res. 1970;4(3):244-56. https://doi.org/10.1203/00006450-197005000-00003 PMid:4246425 DOI: https://doi.org/10.1203/00006450-197005000-00003

Kopp SJ, Klevay LM, Feliksik JM. Physiological and metabolic characterization of a cardiomyopathy induced by chronic copper deficiency. Am J Physiol. 1983;245(5):H855-66. https://doi.org/10.1152/ajpheart.1983.245.5.h855 PMid:6638205 DOI: https://doi.org/10.1152/ajpheart.1983.245.5.H855

Elsherif L, Ortines RV, Saari JT, Kang YJ. Congestive heart failure in copper-deficient mice. Exp Biol Med. 2003;228(7):811- 7. https://doi.org/10.1177/15353702-0322807-06 PMid:12876300 DOI: https://doi.org/10.1177/15353702-0322807-06

Wildman RE, Hopkins R, Failla ML, Medeiros DM. Marginal copper-restricted diets produce altered cardiac ultrastructure in the rat. Proc Soc Exp Biol Med. 1995;210(1):43-9. https://doi.org/10.3181/00379727-210-43923 PMid:7675797 DOI: https://doi.org/10.3181/00379727-210-43923

Wester PO. Trace elements in human myocardial infarction determined by neutron activation analysis. Acta Med Scand. 1965;178(6):765-88. https://doi.org/10.1111/j.0954-6820.1965.tb04329.x PMid:5856473 DOI: https://doi.org/10.1111/j.0954-6820.1965.tb04329.x

Zama N, Towns R. Cardiac copper, magnesium, and zinc in recent and old myocardial infarction. Biol Trace Element Res. 1986;10(3):201-8. https://doi.org/10.1007/bf02795618 PMid:24254394 DOI: https://doi.org/10.1007/BF02795618

Chipperfield B, Chipperfield JR. Differences in metal content of the heart muscle in death from ischemic heart disease. Am Heart J. 1978;95(6):732-7. https://doi.org/10.1016/0002-8703(78)90503-3 PMid:655086 DOI: https://doi.org/10.1016/0002-8703(78)90503-3

Prohaska JR. Biochemical changes in copper deficiency. Am J Clin Nutr. 1990;1(9):452-61. PMid:15539236 DOI: https://doi.org/10.1016/0955-2863(90)90080-5

Medeiros DM, Davidson J, Jenkins JE. A unified perspective on copper deficiency and cardiomyopathy. Proc Soc Exp Biol Med. 1993;203(3):262-73. https://doi.org/10.3181/00379727-203-43599 PMid:8516340 DOI: https://doi.org/10.3181/00379727-203-43599

Feng W, Ye F, Xue W, Zhou Z, Kang YJ. Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol. 2009;75(1):174-82. https://doi.org/10.1124/mol.108.051516 PMid:18842833 DOI: https://doi.org/10.1124/mol.108.051516

Ohira T, Iso H. Cardiovascular disease epidemiology in Asia-an overview. Circulation. 2013;77(7):1646-52. https://doi.org/10.1253/circj.cj-13-0702 PMid:23803294 DOI: https://doi.org/10.1253/circj.CJ-13-0702

Thompson WR, Gordon NF, Pescatello LS. Clinical exercise testing. In: Thompson WR, Gordon NF, Pescatello LS, editors. ACSM’s Guidelines for Exercise Testing and Prescription. 8th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins; 2010. p. 105-15. https://doi.org/10.1249/fit.0b013e3181aae1a0 DOI: https://doi.org/10.1249/FIT.0b013e3181aae1a0

Voortman T, Chen Z, Girschik C, Kavousi M, Franco OH, Braun KV, et al. Associations between macronutrient intake and coronary heart disease (CHD): The Rotterdam study. Clin Nutr. 2021;40(11):5494-9. https://doi.org/10.1016/j.clnu.2021.08.022 PMid:34656031 DOI: https://doi.org/10.1016/j.clnu.2021.08.022

Klevay LM. Copper, coronary heart disease, and dehydroepiandrosterone. J Am Coll Cardiol. 2015;65(19):2151-2. PMid:25975482 DOI: https://doi.org/10.1016/j.jacc.2015.02.065

Morrell A, Tallino S, Yu L, Burkhead JL. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life. 2017;69(4):263-70 https://doi.org/10.1002/iub.1613 PMid:28271632 DOI: https://doi.org/10.1002/iub.1613

He W, Kang YJ. Ischemia-induced copper loss and suppression of angiogenesis in the pathogenesis of myocardial infarction. Cardiovasc Toxicol. 2013;13(1):1-8. https://doi.org/10.1007/s12012-012-9174-y PMid:22644803 DOI: https://doi.org/10.1007/s12012-012-9174-y

Xiao Y, Wang T, Song X, Yang D, Chu Q, Kang YJ. Copper promotion of myocardial regeneration. Exp Biol Med (Maywood). 2020;245(10):911-21. https://doi.org/10.1177/1535370220911604 PMid:32148090 DOI: https://doi.org/10.1177/1535370220911604

Dinicolantonio JJ, Mangan D, O’Keefe JH. Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart. 2018;5(2):e000784. https://doi.org/10.1136/openhrt-2018-000784 PMid:30364437 DOI: https://doi.org/10.1136/openhrt-2018-000784

Kodali HP, Pavilonis BT, Schooling CM. Effects of copper and zinc on ischemic heart disease and myocardial infarction: A Mendelian randomization study. Am J Clin Nutr. 2018;108(2):237-42. https://doi.org/10.1093/ajcn/nqy129 PMid:29982268 DOI: https://doi.org/10.1093/ajcn/nqy129

Downloads

Published

2022-04-22

How to Cite

1.
Martineta M, Siregar Y, Ahmad H. Association between Blood Copper Levels and the Incidence of Ischemic Heart Disease. Open Access Maced J Med Sci [Internet]. 2022 Apr. 22 [cited 2024 Nov. 21];10(B):1212-7. Available from: https://oamjms.eu/index.php/mjms/article/view/9592

Similar Articles

You may also start an advanced similarity search for this article.