The Effectivity of IC50 Test between Green Tea and Curcumin Extracts from Mt. Lawu as an Antioxidant for SOD and MDA Levels in a Cisplatin Rat Model
DOI:
https://doi.org/10.3889/oamjms.2022.9628Keywords:
Superoxide dismutase, Malondialdehyde, Ototoxicity, Antioxidant, IC50Abstract
Abstract
Purpose: This study aims to determine the relationship of the effective dose between Mt. Lawu green tea and Mt. Lawu curcumin as antioxidants based on superoxide dismutase (SOD) and malondialdehyde (MDA) levels.
Methods: Blood was undertaken through the orbital sinus and allowed to stand until serum was formed. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) method was used to observe the effective dose of Mt. Lawu green tea and curcumin by quantifying the color change of each sample after incubation. The color change measured the absorbance value through a spectrophotometer. The data were analyzed using a correlation test to measure the effective concentration of Mt. Lawu green tea and Mt. Lawu curcumin toward SOD and MDA as antioxidant parameters in a cisplatin (CN) rat model.
Result: The study results show that the IC50 green tea concentration of 0.75 ± 0.16 µg/mL and the curcumin concentration of 5.3 ± 0.4 µg/mL can reduce 50% of DPPH. Based on the graphs, SOD increased and MDA decreased.
Discussion and Conclusion: This study demonstrates that the IC50 parameter of Mt. Lawu green tea and curcumin extracts is a good indicator for assigning the SOD and MDA levels in a CN rat model. Extracts derived from Mt. Lawu green tea and curcumin have ideal lowering DPPH, and the dosage has a strong relationship with the increase in SOD and the decrease in MDA.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-78. https://doi.org/10.1016/j.ejphar.2014.07.025 PMid:25058905 DOI: https://doi.org/10.1016/j.ejphar.2014.07.025
Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, et al. Cisplatin induces a mitochondrial- ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One. 2013;8(11):e81162. https://doi.org/10.1371/journal.pone.0081162 PMid:24260552 DOI: https://doi.org/10.1371/journal.pone.0081162
Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett. 2015;237(3):219-27. https://doi.org/10.1016/j.toxlet.2015.06.012 PMid:26101797 DOI: https://doi.org/10.1016/j.toxlet.2015.06.012
Ding J, Wang H, Wu ZB, Zhao J, Zhang S, Li W. Protection of murine spermatogenesis against ionizing radiation-induced testicular injury by a green tea polyphenol. Biol Reprod. 2015;92(1):6. https://doi.org/10.1095/biolreprod.114.122333 PMid:25395675 DOI: https://doi.org/10.1095/biolreprod.114.122333
Yan Z, Zhong Y, Duan Y, Chen Q, Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim Nutr. 2020;6(2):115-23. https://doi.org/10.1016/j.aninu.2020.01.001 PMid:32542190 DOI: https://doi.org/10.1016/j.aninu.2020.01.001
Altobelli GG, Van Noorden S, Balato A, Cimini V. Copper/Zinc superoxide dismutase in human skin: Current knowledge. Front Med (Lausanne). 2020;7:183. https://doi.org/10.3389/fmed.2020.00183 PMid:32478084 DOI: https://doi.org/10.3389/fmed.2020.00183
Setiowati L, Febrina L, Mahmudah F, Ramadhan AM, editors. Pengaruh Pemberian Infusa Daun Sirsak (Annona muricata L.) terhadap Profil Kadar Malondialdehida (MDA) Tikus Putih (Rattus norvegicus). Proceeding of Mulawarman Pharmaceuticals Conferences; 2018. DOI: https://doi.org/10.25026/mpc.v8i1.320
Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci. 2021;22(7):3380. https://doi.org/10.3390/ijms22073380 PMid:33806141 DOI: https://doi.org/10.3390/ijms22073380
Shekhar TC, Anju G. Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves. Am J Ethnomed. 2014;1(4):244-9.
Hussein YM, Mohamed RH, Shalaby SM, Abd El-Haleem MR, Abd El Motteleb DM. Anti-oxidative and anti-apoptotic roles of spermatogonial stem cells in reversing cisplatin-induced testicular toxicity. Cytotherapy. 2015;17(11):1646-54. https://doi.org/10.1016/j.jcyt.2015.07.001 PMid:26253898 DOI: https://doi.org/10.1016/j.jcyt.2015.07.001
Banjarnahor SD, Artanti N. Antioxidant properties of flavonoids. Med J Indones. 2014;23(4):239-44. DOI: https://doi.org/10.13181/mji.v23i4.1015
Mao X, Gu C, Chen D, Yu B, He J. Oxidative stress-induced diseases and tea polyphenols. Oncotarget. 2017;8(46):81649-61. https://doi.org/10.18632/oncotarget.20887 PMid:29113421 DOI: https://doi.org/10.18632/oncotarget.20887
Esen E, Özdoğan F, Gürgen SG, Özel HE, Başer S, Genç S, et al. Ginkgo biloba and lycopene are effective on cisplatin induced ototoxicity? J Int Adv Otol. 2018;14(1):22-6. https://doi.org/10.5152/iao.2017.3137 PMid:28639555 DOI: https://doi.org/10.5152/iao.2017.3137
Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:338. https://doi.org/10.3389/fncel.2017.00338 PMid:29163050 DOI: https://doi.org/10.3389/fncel.2017.00338
Yiannakopoulou EC. Targeting oxidative stress response by green tea polyphenols: Clinical implications. Free Radic Res. 2013;47(9):667-71. https://doi.org/10.3109/10715762.2013.819975 PMid:23805775 DOI: https://doi.org/10.3109/10715762.2013.819975
Alrawaiq NS, Abdullah A. A review of antioxidant polyphenol curcumin and its role in detoxification. Int J Pharm Tech Res. 2014;6(1):280-9.
Downloads
Published
How to Cite
License
Copyright (c) 2022 Novi Primadewi, Harijono Kariosentono, Ari Probandari, Budiyanti Wiboworini (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0