Immune Response (Serum Globulin) in BALB/c Mice after Hookworm Egg Protein Immunization as the Initial Stage of Developing Laboratory Diagnostics: An In Vivo Approach

Authors

  • Budi Santosa Department of Medical and Clinical Laboratory Science, Universitas Muhammadiyah Semarang, Semarang, Central Java, Indonesia
  • Arista Kurnia Budi Fristiani Department of Laboratory Technology, Universitas Muhammadiyah Semarang, Semarang, Indonesia image/svg+xml
  • Edi Dharmana Department of Immunology, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia image/svg+xml
  • Fitriani Nur Damayanti Department of Midwifery, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang, Semarang, Indonesia image/svg+xml
  • Heru Santoso Wahito Nugroho Department of Health, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9642

Keywords:

Hookworm, Mouse serum protein, Hookworm egg protein

Abstract

BACKGROUND: Hookworm infestation is still high and requires practical laboratory diagnosis with high sensitivity and specificity. Meanwhile, there are several limitations associated with the existing method; hence, a new method is essentially needed. Furthermore, the principle of immunological reactions needs to be developed by identifying the extent of hookworm eggs suspension immune responses. The BALB/c mouse is among the most widely used inbred models used in biomedical research and is particularly utilized in immunology and infectious disease research.

AIM: This study aims to determine whether the protein concentration of hookworm eggs stimulates antibodies formation (proteins) in the serum of BALB/c mice.

METHODS: This is an experimental study with a post-test only control design approach. Egg protein was isolated by removing the contents using a mini drill to immunize BALB/c mice, while the antibody response was observed by spectrophotometer and agglutination methods.

RESULTS: The Chi-square and Post hoc statistical tests showed a significance p ≤ 0.001 indicating a relationship between hookworm egg protein and agglutination results. The higher the antibody level, the more visible the agglutination and vice versa.

CONCLUSION: These results are expected to form a basis for developing more practical and efficient diagnostic methods based on antigen-antibody reactions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Oswald WE, Stewart AE, Kramer MR, Endeshaw T, Zerihun M, Melak B, et al. Association of community sanitation usage with soil-transmitted helminth infections among school-aged children in Amhara Region, Ethiopia. Parasit Vectors. 2017;10(1):91. https://doi.org/10.1186/s13071-017-2020-0 PMid:28212668 DOI: https://doi.org/10.1186/s13071-017-2020-0

Bharti B, Bharti S, Khurana S. Worm infestation: Diagnosis, treatment, and prevention. Indian J Pediatr. 2018;85(11):1017- 24. https://doi.org/10.1007/s12098-017-2505-z PMid: 29127616 DOI: https://doi.org/10.1007/s12098-017-2505-z

Kabore A, Ibikounle M, Tougoue JJ, Mupoyi S, Ndombe M, Shannon S, et al. Initiating NTD programs targeting schistosomiasis and soil-transmitted helminthiasis in two provinces of the democratic republic of the Congo: Establishment of baseline prevalence for mass drug administration. Acta Trop. 2017;166:177-85. https://doi.org/10.1016/j.actatropica.2016.11.023 PMid:27888125 DOI: https://doi.org/10.1016/j.actatropica.2016.11.023

da Luz RI, Linsuke S, Lutumba P, Hasker E, Boelaert M. Assessment of schistosomiasis and soil-transmitted helminths prevalence in school-aged children and opportunities for integration of control in local health services in Kwilu Province, the democratic republic of the Congo. Trop Med Int Health. 2017;22(11):1442-50. https://doi.org/10.1111/tmi.12965 PMid:28853206 DOI: https://doi.org/10.1111/tmi.12965

Dunn JC, Turner HC, Tun A, Anderson RM. Epidemiological surveys of, and research on, soil-transmitted helminths in Southeast Asia: A systematic review. Parasit Vectors. 2016;9(1):1-13. https://doi.org/10.1186/s13071-016-1310-2 DOI: https://doi.org/10.1186/s13071-016-1310-2

Rusjdi SR. Tinjauan pustaka infeksi cacing dan alergi. J Kesehat Andalas. 2015;4(1):322-5. DOI: https://doi.org/10.25077/jka.v4i1.241

Khurana S, Sethi S. Laboratory diagnosis of soil-transmitted helminthiasis. Trop Parasitol. 2017;7(2):86-91. https://doi.org/10.4103/tp.TP_29_17 PMid:29114485

Ngwese MM, Manouana GP, Moure PA, Ramharter M, Esen M, Adégnika AA. Diagnostic techniques of soil-transmitted helminths: Impact on control measures. Trop Med Infect Dis. 2020;5(2):93. https://doi.org/10.3390/tropicalmed5020093 PMid:32516900 DOI: https://doi.org/10.3390/tropicalmed5020093

Kato M, Yan H, Tsuji NM, Chiba T, Hanyu Y. A method for inducing antigen-specific IgG production by in vitro immunization. J Immunol Methods. 2012;386(1-2):60-9. https://doi.org/10.1016/j.jim.2012.08.019 PMid:22974834 DOI: https://doi.org/10.1016/j.jim.2012.08.019

Tang S, Liu Z, Li R, Chen Y, Zhao L, Shen H, et al. Preparation and identification of the polyclonal antibody against ATRX-C 2193- 2492. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017;33(4):536-9. PMid:28395727

Malaei F, Rasaee MJ, Paknejad M, Latifi AM, Rahbarizadeh F. Production and characterization of monoclonal and polyclonal antibodies against truncated recombinant dickkopf-1 as a candidate biomarker. Monoclon Antib Immunodiagn Immunother. 2018;37(6):257-64. https://doi.org/10.1089/mab.2018.0029 PMid:30592704 DOI: https://doi.org/10.1089/mab.2018.0029

Francis JN, Thaburet JF, Bonnet D, Sizer PJ, Brown CB, Georges B. Increasing cellular immunogenicity to peptide-based vaccine candidates using a fluorocarbon antigen delivery system. Vaccine. 2015;33(8):1071-6. https//doi.org/10.1016/j.vaccine.2014.12.061 PMid:25573036 DOI: https://doi.org/10.1016/j.vaccine.2014.12.061

Da Rocha MC, Barés ME, Braga MC. Quantification of viable helminth eggs in samples of sewage sludge. Water Res. 2016;103:245-55. https://doi.org/10.1016/j.watres.2016.07.039 PMid:27470467 DOI: https://doi.org/10.1016/j.watres.2016.07.039

Roche AM, Richard AL, Rahkola JT, Janoff EN, Weiser JN. Antibody blocks the acquisition of bacterial colonization through agglutination. Mucosal Immunol. 2015;8(1):176-85. https://doi.org/10.1038/mi.2014.55 PMid:24962092 DOI: https://doi.org/10.1038/mi.2014.55

Wu D, Piszczek G. Rapid determination of antibody-antigen affinity by mass photometry. J Vis Exp. 2021;168:61784. https://doi.org/10.3791/61784 PMid:33616097 DOI: https://doi.org/10.3791/61784

McCormack PL. Immune globulin (human) 10% liquid: A review of its use in primary immunodeficiency disorders. BioDrugs. 2013;27(4):393-400. https://doi.org/10.1007/s40259-013-0044-3 PMid:23703447 DOI: https://doi.org/10.1007/s40259-013-0044-3

Vaillant AA, Jamal Z, Ramphul K. In: StatPearls. Immunoglobulin. Treasure Island (FL): StatPearls Publishing; 2021. PMid:30035936

Jolles S, Borrell R, Zouwail S, Heaps A, Sharp H, Moody M, et al. Calculated globulin (CG) as a screening test for antibody deficiency. Clin Exp Immunol. 2014;177(3):671-8. https://doi.org/10.1111/cei.12369 PMid:24784320 DOI: https://doi.org/10.1111/cei.12369

He J, Pan H, Liang W, Xiao D, Chen X, Guo M, et al. Prognostic effect of albumin-to-globulin ratio in patients with solid tumors: A systematic review and meta-analysis. J Cancer. 2017;8(19):4002-10. https://doi.org/10.7150/jca.21141 PMid:29187875 DOI: https://doi.org/10.7150/jca.21141

Kwong PD. What are the most powerful immunogen design vaccine strategies? A structural biologist’s perspective. Cold Spring Harb Perspect Biol. 2017;9(11):1-7. DOI: https://doi.org/10.1101/cshperspect.a029470

Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: Residual immunogenicity resides in the CDR regions. MAbs. 2010;2(3):256-65. https://doi.org/10.4161/mabs.2.3.11641 PMid:20400861 DOI: https://doi.org/10.4161/mabs.2.3.11641

Brown K, Sacks SH, Wong W. Tertiary lymphoid organs in renal allografts can be associated with donor-specific tolerance rather than rejection. Eur J Immunol. 2011;41(1):89-96. https://doi.org/10.1002/eji.201040759 PMid:21182080 DOI: https://doi.org/10.1002/eji.201040759

Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2):3-23. https://doi.org/10.1016/j.jaci.2009.12.980 PMid:20176265 DOI: https://doi.org/10.1016/j.jaci.2009.12.980

Anuradha R, Munisankar S, Dolla C, Kumaran P, Nutman TB, Babu S. Parasite antigen-specific regulation of Th1, Th2, and Th17 responses in strongyloides stercoralis infection. J Immunol. 2015;195(5):2241-50. https://doi.org/10.4049/jimmunol.1500745 PMid:26202988 DOI: https://doi.org/10.4049/jimmunol.1500745

Nair MG, Herbert DR. Immune polarization by hookworms : Taking cues from T helper Type 2, Type 2 innate lymphoid cells and alternatively activated macrophages. Immunol. 2016;148(2):115-24. https://doi.org/10.1111/imm.12601 PMid:26928141 DOI: https://doi.org/10.1111/imm.12601

Ahmed N, French T, Rausch S, Kühl A, Hemminger K, Dunay IR, et al. Toxoplasma co-infection prevents Th2 differentiation and leads to a helminth-specific Th1 response. Front Cell Infect Microbiol. 2017;7:341. https://doi.org/10.3389/fcimb.2017.00341 PMid:28791259 DOI: https://doi.org/10.3389/fcimb.2017.00341

Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on Type-2 Immunity. Cytokine. 2015;75(1):25-37. https://doi.org/10.1016/j.cyto.2015.05.008 PMid:26073683 DOI: https://doi.org/10.1016/j.cyto.2015.05.008

Henry EK, Inclan-rico JM, Siracusa MC, State R. Type 2 cytokine responses: Regulating immunity to helminth parasites and allergic inflammation. Curr Pharmacol Rep. 2017;3(6):346-59. https://doi.org/10.1007/s40495-017-0114-1 PMid:29399438 DOI: https://doi.org/10.1007/s40495-017-0114-1

Armstrong B. Antigen-antibody reactions. In: ISBT Science Series. 2nd ed., Vol. 3. 2020. p. 68-80. https://doi.org/10.1111/voxs.12590 DOI: https://doi.org/10.1111/voxs.12590

Cepon-Robins TJ, Liebert MA, Urlacher SS, Schrock JM, Harrington CJ, Madimenos FC, et al. Market integration and soil-transmitted Helminth infection among the Shuar of Amazonian ecuador. PLoS One. 2020;15(7):1-24. https://doi.org/10.1371/journal.pone.0236924 DOI: https://doi.org/10.1371/journal.pone.0236924

Arur S, Schedl T. Generation and purification of highly-specific antibodies for detecting post-translationally modified proteins in vivo. Nat Protoc. 2014;9(2):375-95. https://doi.org/10.1038/nprot.2014.017 PMid:24457330 DOI: https://doi.org/10.1038/nprot.2014.017

Yeow N, Tabor RF, Garnier G. Direct measurement of IgM-Antigen interaction energy on individual red blood cells. Colloids Surf B Biointerfaces. 2017;155:373-8. https://doi.org/10.1016/j.colsurfb.2017.04.038 PMid:28454066 DOI: https://doi.org/10.1016/j.colsurfb.2017.04.038

Han S, Wang G, Xu N, Liu H. Quantitative assessment of the effects of oxidants on antigen-antibody binding in vitro. Oxid Med Cell Longev. 2016;2016:1480463. https://doi.org/10.1155/2016/1480463 PMid:27313823 DOI: https://doi.org/10.1155/2016/1480463

Downloads

Published

2022-06-06

How to Cite

1.
Santosa B, Fristiani AKB, Dharmana E, Damayanti FN, Nugroho HSW. Immune Response (Serum Globulin) in BALB/c Mice after Hookworm Egg Protein Immunization as the Initial Stage of Developing Laboratory Diagnostics: An In Vivo Approach. Open Access Maced J Med Sci [Internet]. 2022 Jun. 6 [cited 2024 Nov. 21];10(A):1164-9. Available from: https://oamjms.eu/index.php/mjms/article/view/9642