Electronic and Conventional Cigarette Exposure Aggravate Metabolic Parameters in High-Fat Diet-Induced Rats

Authors

  • Naufal Arif Ismail Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia https://orcid.org/0000-0002-3851-2509
  • Tsavira Nabila Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia https://orcid.org/0000-0002-6309-4679
  • Anastasya Syam Ramadhani Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
  • Dwi Nur Ahsani Department of Histology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia https://orcid.org/0000-0003-1344-3997

DOI:

https://doi.org/10.3889/oamjms.2022.9723

Keywords:

Cigarette, Electronic cigarette, High-fat diet, Metabolic parameters, Nicotine

Abstract

BACKGROUND: The health implications of the perceived use of electronic cigarettes (e-cigarettes) are safer than conventional cigarettes on metabolic parameters are not clearly understood. The current study evaluates the metabolic parameters as the impact of cigarette and e-cigarette exposure in high-fat-diet (HFD)-induced rats.

METHODS: Twenty-four male Wistar rats were divided into four groups: i) NC: normal control group; ii) HFD Alone; iii) HFD + Cig and iv) HFD + E-Cig, administered HFD followed by cigarette or e-cigarette exposure, respectively. Six cigarettes stick with nicotine 2 mg/stick and 2 ml of e-cigarette liquid with nicotine 6 mg/ml were used for 25 cycles of exposure. In the end, the rats were sacrificed and obtained blood for metabolic parameter analysis, consisting of lipid profile, glucose, uric acid, urea, creatinine, aspartate transaminase (AST), and alanine transaminase (ALT). Statistical analysis with One-Way ANOVA with post hoc was used for high-density lipoprotein (HDL), triglyceride, total cholesterol, glucose, uric acid, urea, and creatinine. Furthermore, Kruskal-Wallis with Mann-Whitney U was used for nonparametric data such as low-density lipoprotein (LDL), AST, and ALT.

RESULTS: Data of all metabolic parameters were shown a significant increase in the group of HFD Alone, HFD + Cig, and HFD + E-Cig, otherwise HDL levels. Furthermore, HFD + Cig followed by HFD + E-Cig groups were significantly higher compared to HFD Alone group.

CONCLUSION: E-cigarettes were shown to be less harmful than conventional cigarettes but did not guarantee it was safe. Both cigarettes and e-cigarettes aggravated metabolic parameters in HFD-induced rats.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Liu Z, Patil IY, Jiang T, Sancheti H, Walsh JP, Stiles BL, et al. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS One. 2015;10(5):e0128274. https://doi.org/10.1371/journal.pone.0128274 PMid:26023930 DOI: https://doi.org/10.1371/journal.pone.0128274

Lang P, Hasselwander S, Li H, Xia N. Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice. Sci Rep 2019;9:1-14. https://doi.org/10.1038/s41598-019-55987-x DOI: https://doi.org/10.1038/s41598-019-55987-x

Adam SK, Soelaiman IN, Umar NA, Mokhtar N, Mohamed N, Jaarin K. Effects of repeatedly heated palm oil on serum lipid profile, lipid peroxidation and homocysteine levels in a post-menopausal rat model. Mcgill J Med. 2008;11(2):145-51. PMid:19148313 DOI: https://doi.org/10.26443/mjm.v11i2.566

Go RE, Hwang KA, Kim YS, Kim SH, Nam KH, Choi KC. Effects of palm and sunflower oils on serum cholesterol and fatty liver in rats. J Med Foo. 2015;18:363-9. https://doi.org/10.1089/jmf.2014.3163 PMid:25393932 DOI: https://doi.org/10.1089/jmf.2014.3163

Lontchi-Yimagou E, Tanya A, Tchankou C, Ngondi J, Oben J. Metabolic effects of quail eggs in diabetes-induced rats: comparison with chicken eggs. Food Nutr Res. 2016;60:32530. https://doi.org/10.3402/fnr.v60.32530 PMid:27717410 DOI: https://doi.org/10.3402/fnr.v60.32530

Ma B, Chen Y, Wang X, Zhang R, Niu S, Ni L, et al. Cigarette smoke exposure impairs lipid metabolism by decreasing low-density lipoprotein receptor expression in hepatocytes. Lipids Health Dis. 2020;19(1):88. https://doi.org/10.1186/s12944-020-01276-w PMid:32384892 DOI: https://doi.org/10.1186/s12944-020-01276-w

Śliwińska-Mossoń M, Milnerowicz H. The impact of smoking on the development of diabetes and its complications. Diabetes Vasc Dis Res. 2017;14(4):265-76. https://doi.org/10.1177/1479164117701876 PMid:28393534 DOI: https://doi.org/10.1177/1479164117701876

Jamal O, Aneni EC, Shaharyar S, Ali SS, Parris D, McEvoy JW, et al. Cigarette smoking worsens systemic inflammation in persons with metabolic syndrome. Diabetol Metab Syndr. 2014;6:79. https://doi.org/10.1186/1758-5996-6-79 PMid:25960769 DOI: https://doi.org/10.1186/1758-5996-6-79

Mouhamed DH, Ezzaher A, Neffati F, Douki W, Gaha L, Najjar MF. Effect of cigarette smoking on insulin resistance risk. Ann Cardiol Angeiol (Paris). 2016;65:21-5. https://doi.org/10.1016/j.ancard.2014.12.001 DOI: https://doi.org/10.1016/j.ancard.2014.12.001

Kim SK, Choe JY. Association between smoking and serum uric acid in Korean population. Medicine (Baltimore). 2019;98(7):e14507. https://doi.org/10.1097/md.0000000000014507 PMid:30762781 DOI: https://doi.org/10.1097/MD.0000000000014507

Bandiera S, Pulcinelli RR, Huf F, Almeida FB, Halmenschlager G, Bitencourt PE, et al. Hepatic and renal damage by alcohol and cigarette smoking in rats. Toxicol Res. 2021;37:209-19. https://doi.org/10.1007/s43188-020-00057-y DOI: https://doi.org/10.1007/s43188-020-00057-y

Harrell PT, Simmons VN, Correa JB, Padhya TA, Brandon TH. Electronic nicotine delivery systems (“E-cigarettes”): Review of safety and smoking cessation efficacy. Otolaryngol Head Neck Surg (United States). 2014;151:381-93. https://doi.org/10.1177/0194599814536847 PMid:24898072 DOI: https://doi.org/10.1177/0194599814536847

Kaisar MA, Prasad S, Liles T, Cucullo L. A decade of e-cigarettes: Limited research & unresolved safety concerns. Toxicology. 2016;365:67-75. https://doi.org/10.1016/j.tox.2016.07.020 PMid:27477296 DOI: https://doi.org/10.1016/j.tox.2016.07.020

Ogunwale MA, Li M, Raju MV, Chen Y, Nantz MH, Conklin DJ, et al. Aldehyde detection in electronic cigarette aerosols. ACS Omega. 2017;2(3):1207-14. https://doi.org/10.1021/acsomega.6b00489 PMid:28393137 DOI: https://doi.org/10.1021/acsomega.6b00489

Prasedya ES, Ambana Y, Martyasari NW, Aprizal Y, Nurrijawati, Sunarpi. Short-term E-cigarette toxicity effects on brain cognitive memory functions and inflammatory responses in mice. Toxicol Res. 2020;36(3):267-73. https://doi.org/10.1007/s43188-019-00031-3 PMid:32685431 DOI: https://doi.org/10.1007/s43188-019-00031-3

Majid S, Keith RJ, Fetterman JL, Weisbrod RM, Nystoriak J, Wilson T, et al. Lipid profiles in users of combustible and electronic cigarettes. Vasc Med (United Kingdom). 2021;26(5):483-8. https://doi.org/10.1177/1358863X211009313 PMid:34013801 DOI: https://doi.org/10.1177/1358863X211009313

El Golli N, Jrad-Lamine A, Neffati H, Rahali D, Dallagi Y, Dkhili H, et al. Impact of e-cigarette refill liquid with or without nicotine on liver function in adult rats. Toxicol Mech Methods. 2016;26(6):419-26. https://doi.org/10.3109/15376516.2016.1160963 PMid:27484987 DOI: https://doi.org/10.3109/15376516.2016.1160963

Golli N El, Jrad-Lamine A, Neffati H, Dkhili H, Rahali D, Dallagi Y, et al. Impact of e-cigarette refill liquid exposure on rat kidney. Regul Toxicol Pharmacol. 2016;77:109-16. https://doi.org/10.1016/j.yrtph.2016.02.012 PMid:26925498 DOI: https://doi.org/10.1016/j.yrtph.2016.02.012

Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malaysian J Med Sci. 2017;24(5):101-5. https://doi.org/10.21315/mjms2017.24.5.11 PMid:29386977 DOI: https://doi.org/10.21315/mjms2017.24.5.11

Ypsilantis P, Politou M, Anagnostopoulos C, Kortsaris A, Simopoulos C. A rat model of cigarette smoke abuse liability. Comp Med. 2012;62:395-9.

Han Q, Yeung SC, Ip MS, Mak JC. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids Health Dis. 2018;17:1-10. https://doi.org/10.1186/s12944-018-0905-3 DOI: https://doi.org/10.1186/s12944-018-0905-3

Reamtong O, Thiangtrongjit T, Kosoltanapiwat N, Panbangred W, Prangthip P. Potential benefits of L. acidophilus in dyslipidemic rats. Sci Rep. 2021;11:1-12. https://doi.org/10.1038/s41598-021-85427-8 DOI: https://doi.org/10.1038/s41598-021-85427-8

El Golli N, Dkhili H, Dallagi Y, Rahali D, Lasram M, Bini- Dhouib I, et al. Comparison between electronic cigarette refill liquid and nicotine on metabolic parameters in rats. Life Sci. 2016;146:131-8. https://doi.org/10.1016/j.lfs.2015.12.049 PMid:26752340 DOI: https://doi.org/10.1016/j.lfs.2015.12.049

Azevedo PS, Polegato BF, Paiva S, Costa N, Santos P, Bazan S, et al. The role of glucose metabolism and insulin resistance in cardiac remodelling induced by cigarette smoke exposure. J Cell Mol Med. 2021;25(2):1314-8. https://doi.org/10.1111/jcmm.16053 PMid:33300293 DOI: https://doi.org/10.1111/jcmm.16053

Verhaegen A, Van Gaal L. Do E-cigarettes induce weight changes and increase cardiometabolic risk? A signal for the future. Obes Rev. 2017;18:1136-46. https://doi.org/10.1111/obr.12568 PMid:28660671 DOI: https://doi.org/10.1111/obr.12568

Ali N, Rahman S, Islam S, Haque T, Molla NH, Sumon AH, et al. The relationship between serum uric acid and lipid profile in Bangladeshi adults. BMC Cardiovasc Disord. 2019;19:1-7. https://doi.org/10.1186/s12872-019-1026-2 DOI: https://doi.org/10.1186/s12872-019-1026-2

Peng TC, Wang CC, Kao TW, Chan JY, Yang YH, Chang YW, et al. Relationship between hyperuricemia and lipid profiles in us adults. Biomed Res Int. 2015;2015:127596. https://doi.org/10.1155/2015/127596 DOI: https://doi.org/10.1155/2015/127596

Moon J, Lee H, Kong M, Kim H, Oh Y. Association between electronic cigarette use and levels of high-sensitivity c-reactive protein and uric acid. Asia Pac J Public Health 2020;32(1):35-41. https://doi.org/10.1177/1010539519899777 PMid:31955613 DOI: https://doi.org/10.1177/1010539519899777

Valdivielso JM, Rodríguez-Puyol D, Pascual J, Barrios C, Bermúdez-López M, Sánchez-Niño MD, et al. Atherosclerosis in chronic kidney disease: More, less, or just different? Arterioscler Thromb Vasc Biol. 2019;39(10):1938-66. https://doi.org/10.1161/ATVBAHA.119.312705. PMid:31412740 DOI: https://doi.org/10.1161/ATVBAHA.119.312705

Wang Z, Wang D, Wang Y. Cigarette smoking and adipose tissue: The emerging role in progression of atherosclerosis. Mediators Inflamm. 2017;2017:3102737. https://doi.org/10.1155/2017/3102737 PMid:29445255 DOI: https://doi.org/10.1155/2017/3102737

Sassano MF, Davis ES, Keating JE, Zorn BT, Kochar TK, Wolfgang MC, et al. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol. 2018;16(3):e2003904. https://doi.org/10.1371/journal.pbio.2003904 PMid:29584716 DOI: https://doi.org/10.1371/journal.pbio.2003904

Giudetti AM, Vergara D, Longo S, Friuli M, Eramo B, Tacconi S, et al. Oleoylethanolamide reduces hepatic oxidative stress and endoplasmic reticulum stress in high-fat diet-fed rats. Antioxidants. 2021;10(8):1289. https://doi.org/10.3390/antiox10081289 PMid:34439537 DOI: https://doi.org/10.3390/antiox10081289

Rickard BP, Ho H, Tiley JB, Jaspers I, Brouwer KL. E-cigarette flavoring chemicals induce cytotoxicity in HepG2 cells. ACS Omega. 2021;6(10):6708-13. https://doi.org/10.1021/acsomega.0c05639 PMid:33748584 DOI: https://doi.org/10.1021/acsomega.0c05639

Downloads

Published

2022-05-04

How to Cite

1.
Ismail NA, Nabila T, Ramadhani AS, Ahsani DN. Electronic and Conventional Cigarette Exposure Aggravate Metabolic Parameters in High-Fat Diet-Induced Rats. Open Access Maced J Med Sci [Internet]. 2022 May 4 [cited 2024 Apr. 18];10(A):841-7. Available from: https://oamjms.eu/index.php/mjms/article/view/9723