Relationship between the Level of Amylinemia and Albuminuria Categories in Patients with Latent Autoimmune Diabetes in Adults

Authors

  • Iryna Tsaryk Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Chernivtsi, Ukraine https://orcid.org/0000-0002-5781-2558
  • Nataliia Pashkovska Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Chernivtsi, Ukraine

DOI:

https://doi.org/10.3889/oamjms.2022.9802

Keywords:

Diabetes mellitus, Latent autoimmune diabetes in adults, Amylin, Islet amyloid polypeptide, Chronic kidney disease, Albuminuria

Abstract

BACKGROUND: β-cells of islets of Langerhans produce not only insulin but another hormone – amylin, whose role in the development and progression of chronic kidney disease (CKD) in patients with diabetes mellitus (DM) is not known for certain.

AIM: The aim of the study was to determine the relationship between amylinemia and albuminuria categories in patients with latent autoimmune diabetes in adults (LADA) and CKD.

METHODS: 89 patients with DM and CKD were examined, as well as 15 representatives of the control group. The patients were divided into three groups by the types of DM: 36 patients with LADA, 25 patients with classical type 1 diabetes mellitus (T1D), and 28 patients with type 2 diabetes (T2D). Serum amylin levels were measured using the enzyme-linked immunosorbent assay (ELISA) method.

RESULTS: In the group of patients with LADA, the amylin content was 9.0 times higher than in control (p < 0.01) and 6.8 times higher compared to classical T1D (p < 0.01); at the same time, it was 17.3% lower than in T2D group (p < 0.05). In patients with T1D, the level of amylinemia did not change, whereas in T2D group it was 10.8 times significantly higher compared to the control and 8.3 times higher than in the group of patients with classical T1D. The highest indicator was registered in patients with LADA2 phenotype. The level of amylin was increasing in proportion to the categories of albuminuria. Positive correlations were found between the content of amylin and insulin, C-peptide, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) index and creatinine.

CONCLUSION: Serum amylin level significantly increases progrediently to the albuminuria categories in patients with LADA (especially in LADA2 phenotype) and T2D.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes - 2021. Diabetes Care. 2021;44(Suppl 1):S15-33. https://doi.org/10.2337/dc21-S002 PMid:33298413 DOI: https://doi.org/10.2337/dc21-S002

Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 2011;91(3):795-826. https://doi.org/10.1152/physrev.00042.2009 PMid:21742788 DOI: https://doi.org/10.1152/physrev.00042.2009

Lutz TA. The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1475-84. https://doi.org/10.1152/ajpregu.00703.2009 PMid:20357016 DOI: https://doi.org/10.1152/ajpregu.00703.2009

Bell ET. Hyalinization of the islets of Langerhans in diabetes mellitus. Diabetes. 1952;1(5):341-4. https://doi.org/10.2337/diab.1.5.341 DOI: https://doi.org/10.2337/diab.1.5.341

Clark A, Wells CA, Buley ID, Cruickshank JK, Vanhegan RI, Matthews DR, et al. Islet amyloid, increased A-cells, decreased B-cells and exocrine fibrosis: quantitative changes in the pancreas in Type 2 diabetes. Diabetes Res. 1988;9(4):151-9. PMid:3073901

Ehrlich JC, Ratner IM. Amyloidosis of the islets of Langerhans. A restudy of islet hyalin in diabetic and nondiabetic individuals. Am J Pathol. 1961;38(1):49-59. PMid:13726023

Gong W, Liu ZH, Zeng CH, Peng A, Chen HP, Zhou H, et al. Amylin deposition in the kidney of patients with diabetic nephropathy. Kidney Int. 2007;72(2):213-8. https://doi.org/10.1038/sj.ki.5002305 PMid:17495860 DOI: https://doi.org/10.1038/sj.ki.5002305

Fourlanos S, Dotta F, Greenbaum CJ, Palmer JP, Rolandsson O, Colman GP, et al. Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia. 2005;48(11):2206-12. https://doi.org/10.1007/s00125-005-1960-7 PMid:16193284 DOI: https://doi.org/10.1007/s00125-005-1960-7

Buzzetti R, Tuomi T, Mauricio D, Pietropaolo M, Zhou Z, Pozzilli P, et al. Management of latent autoimmune diabetes in adults: A consensus statement from an international expert panel. Diabetes. 2020;69(10):2037-47. https://doi.org/10.2337/dbi20-0017 PMid:32847960 DOI: https://doi.org/10.2337/dbi20-0017

Liu L, Li X, Xiang Y, Huang G, Lin J, Yang L, et al. LADA China Study Group. Latent autoimmune diabetes in adults with low-titer GAD antibodies: Similar disease progression with Type 2 diabetes: A nationwide, multicenter prospective study (LADA China Study 3). Diabetes Care. 2015;38(1):16-21. https://doi.org/10.2337/dc14-1770 PMid:25336751 DOI: https://doi.org/10.2337/dc14-2861

Stevens PE, Levin A; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825-30. https://doi.org/10.7326/0003-4819-158-11-201306040-00007 PMid:23732715 DOI: https://doi.org/10.7326/0003-4819-158-11-201306040-00007

Westermark P, Engstrom U, Johnson KH. Islet amyloid polypeptide: Pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci U S A. 1990;87(13):5036-40. https://doi.org/10.1073/pnas.87.13.5036 PMid:2195544 DOI: https://doi.org/10.1073/pnas.87.13.5036

Anguiano M, Nowak RJ, Lansbury PT Jr. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to Type II diabetes. Biochemistry. 2002;41(38):11338-43. https://doi.org/10.1021/bi020314u PMid:12234175 DOI: https://doi.org/10.1021/bi020314u

Despa S, Margulies KB, Chen L, Knowlton AA, Havelm PJ, Taegtmeyer H, et al. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: A study in humans and rats. Circ Res. 2012;110(4):598-608. https://doi.org/10.1161/CIRCRESAHA.111.258285 PMid:22275486 DOI: https://doi.org/10.1161/CIRCRESAHA.111.258285

Despa S, Sharma S, Harris TR, Dong H, Li N, Chiamvimonvat N, et al. Cardioprotection by controlling hyperamylinemia in a “humanized” diabetic rat model. J Am Heart Assoc. 2014;3(4):e001015. https://doi.org/10.1161/JAHA.114.001015 PMid:25146704 DOI: https://doi.org/10.1161/JAHA.114.001015

Liu M, Verma N, Peng X, Srodulski S, Morris A, Chow M, et al. Hyperamylinemia increases il-1β synthesis in the heart via peroxidative sarcolemmal injury. Diabetes. 2016;65(9):2772-83. https://doi.org/10.2337/db16-0044 PMid:27335231 DOI: https://doi.org/10.2337/db16-0044

Jackson K, Barisone GA, Diaz E, Jin L, DeCarli C, Despa F. Amylin deposition in the brain: A second amyloid in Alzheimer’s disease? Ann Neurol. 2013;74(4):517-26. https://doi.org/10.1002/ana.23956 PMid:23794448 DOI: https://doi.org/10.1002/ana.23956

Verma N, Ly H, Liu M, Chen J, Zhu H, Chow M, et al. Intraneuronal amylin deposition, peroxidative membrane injury and increased IL-1β synthesis in brains of Alzheimer’s disease patients with Type-2 diabetes and in diabetic HIP rats. J Alzheimers Dis. 2016;53(1):259-72. https://doi.org/10.3233/JAD-160047 PMid:27163815 DOI: https://doi.org/10.3233/JAD-160047

Ly H, Verma N, Wu F, Liu M, Saatman KE, Nelson PT, et al. Brain microvascular injury and white matter disease provoked by diabetes-associated hyperamylinemia. Ann Neurol. 2017;82(2):208-22. https://doi.org/10.1002/ana.24992 PMid:28696548 DOI: https://doi.org/10.1002/ana.24992

Fawver JN, Ghiwot Y, Koola C, Carrera W, Rodriguez- Rivera J, Hernandez C, et al. Islet amyloid polypeptide (IAPP): A second amyloid in Alzheimer’s disease. Curr Alzheimer Res. 2014;11(10):928-40. https://doi.org/10.2174/1567205011666141107124538 PMid:25387341 DOI: https://doi.org/10.2174/1567205011666141107124538

Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT. In vivo seeding and cross-seeding of localized amyloidosis: A molecular link between Type 2 diabetes and Alzheimer’s disease. Am J Pathol. 2015;185(3):834-46. https://doi.org/10.1016/j.ajpath.2014.11.016 PMid:25700985 DOI: https://doi.org/10.1016/j.ajpath.2014.11.016

Schultz N, Byman E, Netherlands BB, Wennström M. Levels of retinal IAPP are altered in Alzheimer’s disease patients and correlate with vascular changes and hippocampal IAPP levels. Neurobiol Aging. 2018;69:94-101. https://doi.org/10.1016/j.neurobiolaging.2018.05.003 PMid:29864717 DOI: https://doi.org/10.1016/j.neurobiolaging.2018.05.003

Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604. https://doi.org/10.1038/s41574-018-0048-7 PMid:30022099 DOI: https://doi.org/10.1038/s41574-018-0048-7

Downloads

Published

2022-06-12

How to Cite

1.
Tsaryk I, Pashkovska N. Relationship between the Level of Amylinemia and Albuminuria Categories in Patients with Latent Autoimmune Diabetes in Adults. Open Access Maced J Med Sci [Internet]. 2022 Jun. 12 [cited 2024 Apr. 26];10(B):1479-83. Available from: https://oamjms.eu/index.php/mjms/article/view/9802