Antecedents of Patient Satisfaction in Private Clinical Laboratories toward Patient Loyalty with Switching Cost and Location as Moderating Factors (An Empirical Study from Indonesia)
DOI:
https://doi.org/10.3889/oamjms.2022.9809Keywords:
Patient satisfaction, Patient loyalty, Antecedents, Clinical laboratories, COVID-19Abstract
BACKGROUND: Clinical laboratory services are at the forefront to support healthcare services, particularly during the pandemic of COVID-19. The increasing number of private clinical laboratories at present days indicates the increase in patient needs, causing the healthcare service provider to face challenges as people have more options. Therefore fostering patient loyalty (PL) is a crucial success factor for the business growth of clinical laboratories as healthcare providers.
AIM: The purpose of this study is to analyse antecedents of patient satisfaction (PS) in clinical laboratories towards PL with the switching cost (SC) and location (LO) as moderating factors.
METHODS: This study was done as a quantitative survey, and data were obtained by a cross-sectional approach with partial least squares structural equation modeling (PLS-SEM) for the data analysis method. There are 266 respondents eligible as samples, who undergo the phlebotomy process in a private laboratory located within a specific area.
RESULTS: This study demonstrated that all the 9 hypotheses supported with α: 0.05 and p < 0.05, include 6 independent variables named administrative process (AP), information availability (IA), the environment in the phlebotomy room (ER), phlebotomy process (PP), waiting time (WT) and result notification (RN) that influence PS. Patient satisfaction has been shown to have a direct effect on patient loyalty and also mediate the antecedents. Furthermore, SC and LO have demonstrated a significant effect to moderate this relationship.
CONCLUSIONS: Patient satisfaction has been confirmed as the main construct to predict PL whereas the AP is the most important independent variable followed by IA. Clinical laboratory management should pay more attention to these antecedents in order to ensure PS and retain the clinic’s patients. The cost from the patient's perspective should be taken into account since this helps the clinical laboratory keep the patient loyal.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
World Health Organization. World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals. Geneva: World Health Organization; 2020.
Faezipour M, Ferreira S. A system dynamics perspective of patient satisfaction in healthcare. Procedia Comput Sci. 2013;16:148-56. https://doi.org/10.1016/j.procs.2013.01.016 DOI: https://doi.org/10.1016/j.procs.2013.01.016
Bayot ML, Brannan GD, Naidoo P. Clinical Laboratory. StatPearls, Treasure Island (FL): StatPearls Publishing; 2022.
Basu S, Andrews J, Kishore S, Panjabi R, Stuckler D. Comparative performance of private and public healthcare systems in low- and middle-income countries: A systematic review. PLoS Med. 2012;9(6):e1001244. https://doi.org/10.1371/journal.pmed.1001244 PMid:22723748 DOI: https://doi.org/10.1371/journal.pmed.1001244
Balter ML, Leipheimer JM, Chen AI, Shrirao A, Maguire TJ, Yarmush ML. Automated end-to-end blood testing at the pointof-care: Integration of robotic phlebotomy with downstream sample processing. Technology. 2018;6(2):59-66. https://doi.org/10.1142/S2339547818500048 PMid:30057935 DOI: https://doi.org/10.1142/S2339547818500048
Almatrafi D, Altaweel N, Abdelfattah M, Alomari A, Yaseen W, Alsulami M, et al. Assessment of customer satisfaction with the clinical laboratory services provided in King Abdullah Medical City, Makkah. Egypt J Hosp Med. 2018;70(11):2029-37. https://doi.org/10.12816/0044864 DOI: https://doi.org/10.12816/0044864
Khatri A, Sharma S. Assessment of parent satisfaction with phlebotomy services at a paediatric hospital in East Delhi. Int J Curr Res Rev. 2021;13:104-11. https://doi.org/10.31782/IJCRR.2021.131115 DOI: https://doi.org/10.31782/IJCRR.2021.131115
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8. https://doi.org/10.1007/s00134-020-05991-x PMid:32125452 DOI: https://doi.org/10.1007/s00134-020-05991-x
Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Bio Medica Atenei Parm. 2020;91(1):157-60. https://doi.org/10.23750/abm.v91i1.9397 PMid:32191675
Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect. 2021;49(1):21-9. https://doi.org/10.1016/j.ajic.2020.07.011 PMid:32659413 DOI: https://doi.org/10.1016/j.ajic.2020.07.011
Kementerian Kesehatan Republik Indonesia. Situasi Terkini Perkembangan Coronavirus Diseases (COVID-19) 2021. Indonesia: Kementerian Kesehatan Republik Indonesia. Available from: https://infeksiemerging.kemkes.go.id/situasiinfeksi-emerging/situasi-terkini-perkembangan-coronavirusdisease-covid-19-27-februari-2021 [Last accessed on 2021 Dec 10].
World Health Organization. Situation by Region, Country, Territory and Area, WHO Coronavirus COVID-19 Dashboard 2022. Geneva: World Health Organization. Available from: https://covid19.who.int/table [Last accessed on 2022 Feb 1].
Mboi N, Murty Surbakti I, Trihandini I, Elyazar I, Houston Smith K, Bahjuri Ali P, et al. On the road to universal health care in Indonesia, 1990-2016: A systematic analysis for the Global Burden of disease study 2016. Lancet. 2018;392(10147):581-91. https://doi.org/10.1016/S0140-6736(18)30595-6 PMid:29961639 DOI: https://doi.org/10.1016/S0140-6736(18)30595-6
Ziedan E, Simon K, Wing C. Effects of State COVID-19 Closure Policy on NON-COVID-19 Health Care Utilization. Cambridge, MA: National Bureau of Economic Research; 2020. https://doi.org/10.3386/w27621 DOI: https://doi.org/10.3386/w27621
Kementrian Kesehatan Republik Indonesia. Profil Kesehatan Indonesia 2019 2020. Indonesia: Kementrian Kesehatan Republik Indonesia. Available from: https://pusdatin.kemkes.go.id/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-indonesia-2019.pdf [Last accessed on 2021 Dec 10].
Kementrian Kesehatan Republik Indonesia. Profil Kesehatan Indonesia 2020. Indonesia: Kementrian Kesehatan Republik Indonesia; 2021. Available from: https://pusdatin.kemkes.go.id/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-indonesia-2019.pdf [Last accessed on 2021 Dec 10].
George A, Sahadevan J. A Conceptual framework of antecedents of service loyalty in health care: Patients’ perspective. IIM Kozhikode Soc Manag Rev. 2019;8:50-9. https://doi.org/10.1177/2277975218812952 DOI: https://doi.org/10.1177/2277975218812952
Al-Hanawi MK, Khan SA, Al-Borie HM. Healthcare human resource development in Saudi Arabia: Emerging challenges and opportunities-a critical review. Public Health Rev. 2019;40:1. https://doi.org/10.1186/s40985-019-0112-4 DOI: https://doi.org/10.1186/s40985-019-0112-4
Meesala A, Paul J. Service quality, consumer satisfaction and loyalty in hospitals: Thinking for the future. J Retail Consum Serv. 2018;40:261-9. https://doi.org/10.1016/j.jretconser.2016.10.011 DOI: https://doi.org/10.1016/j.jretconser.2016.10.011
Fatima T, Malik SA, Shabbir A. Hospital healthcare service quality, patient satisfaction and loyalty: An investigation in context of private healthcare systems. Int J Qual Reliab Manag. 2018;35(1):1195-214. https://doi.org/10.1108/IJQRM-02-2017-0031 DOI: https://doi.org/10.1108/IJQRM-02-2017-0031
Linder-Pelz S. Toward a theory of patient satisfaction. Soc Sci Med. 1982;16(5):577-82. https://doi.org/10.1016/0277-9536(82)90311-2 PMid:7100990 DOI: https://doi.org/10.1016/0277-9536(82)90311-2
Oliver RL. Whence consumer loyalty? J Mark. 1999;63:33-44. https://doi.org/10.1177/00222429990634s105 DOI: https://doi.org/10.2307/1252099
Addo AA, Wang W, Dankyi AB, Abban OJ, Bentum-Micah G. Sustainability of health institutions: The impact of service quality and patient satisfaction on loyalty. Eur J Bus Manag Res. 2020;5:345. https://doi.org/10.24018/ejbmr.2020.5.4.345 DOI: https://doi.org/10.24018/ejbmr.2020.5.4.345
Sayed S, Cherniak W, Lawler M, Tan SY, El Sadr W, Wolf N, et al. Improving pathology and laboratory medicine in lowincome and middle-income countries: Roadmap to solutions. Lancet. 2018;391(10133):1939-52. https://doi.org/10.1016/S0140-6736(18)30459-8 PMid:29550027 DOI: https://doi.org/10.1016/S0140-6736(18)30459-8
Kemp J, Short R, Bryant S, Sample L, Befera N. Patient-friendly radiology reporting-implementation and outcomes. J Am Coll Radiol. 2022;19(2 Pt B):377-83. https://doi.org/10.1016/j.jacr.2021.10.008 PMid:35152963 DOI: https://doi.org/10.1016/j.jacr.2021.10.008
Garry K, Blecker S, Saag H, Szerencsy A, Jones SA, Testa P, et al. Patient experience with notification of radiology results: A comparison of direct communication and patient portal use. J Am Coll Radiol. 2020;17(9):1130-8. https://doi.org/10.1016/j.jacr.2020.01.046 PMid:32289281 DOI: https://doi.org/10.1016/j.jacr.2020.01.046
Cope AB, Seña AC, Eagle C, Pol A, Rahman M, Peterman TA. Assessing patient opinions about electronic messaging for gonorrhea and chlamydia result notification and partner services, Durham, North Carolina. Sex Transm Dis. 2019;46(9):625-8. https://doi.org/10.1097/OLQ.0000000000001021 PMid:31181032 DOI: https://doi.org/10.1097/OLQ.0000000000001021
Donabedian A. The quality of care: How can it be assessed? JAMA. 1988;260(12):1743-8. https://doi.org/10.1001/jama.1988.03410120089033 PMid:3045356 DOI: https://doi.org/10.1001/jama.260.12.1743
Liu S, Li G, Liu N, Hongwei W. The impact of patient satisfaction on patient loyalty with the mediating effect of patient trust. Inq J Health Care Organ Provis Financ. 2021;58:004695802110072. https://doi.org/10.1177/00469580211007221 PMid:33834860 DOI: https://doi.org/10.1177/00469580211007221
Ricca R, Antonio F. The effect of quality care on patient loyalty mediated with patient satisfaction and moderated by age and gender (Study in outpatients at a private hospital). Int J Appl Bus Int Manag. 2021;6(2):96-112. https://doi.org/10.32535/ijabim.v6i2.1026 DOI: https://doi.org/10.32535/ijabim.v6i2.1026
Mehrabian A, Russell JA. An Approach to Environmental Psychology. Cambridge: The MIT Press; 1974.
Centers for Disease Control and Prevention. About Lab Quality. Lab Qual. Atlanta: Centers for Disease Control and Prevention; 2020. Available from: https://www.cdc.gov/labquality/about-labquality.html [Last accessed on 2021 Dec 10].
Hailu HA, Desale A, Yalew A, Asrat H, Kebede S, Dejene D, et al. Patients’ satisfaction with clinical laboratory services in public hospitals in Ethiopia. BMC Health Serv Res. 2020;20(1):13. https://doi.org/10.1186/s12913-019-4880-9 PMid:31900148 DOI: https://doi.org/10.1186/s12913-019-4880-9
Druică E, Mihăilă V, Burcea M, Cepoi V. Combining direct and indirect measurements to assess patients’ satisfaction with the quality of public health services in Romania: Uncovering structural mechanisms and their implications. Int J Environ Res Public Health. 2019;17(1):152. https://doi.org/10.3390/ijerph17010152 PMid:31878246 DOI: https://doi.org/10.3390/ijerph17010152
Lamiraud K, Stadelmann P. Switching costs in competitive health insurance markets: The role of insurers’ pricing strategies. Health Econ. 2020;29:992-1012. https://doi.org/10.1002/hec.4111 DOI: https://doi.org/10.1002/hec.4111
Yeo J, Miller DP. Estimating switching costs with market share data: An application to medicare Part D. Int J Ind Organ. 2018;61:459-501. https://doi.org/10.1016/j.ijindorg.2018.08.005 DOI: https://doi.org/10.1016/j.ijindorg.2018.08.005
Dayan M, Al Kuwaiti IA, Husain Z, Ng PY, Dayan A. Factors influencing patient loyalty to outpatient medical services: An empirical analysis of the UAE’s government healthcare system. Int J Qual Reliab Manag. 2021;39(1):176-203. https://doi.org/10.1108/IJQRM-11-2020-0373 DOI: https://doi.org/10.1108/IJQRM-11-2020-0373
Aydin S, Özer G, Arasil Ö. Customer loyalty and the effect of switching costs as a moderator variable: A case in the Turkish mobile phone market. Mark Intell Plan. 2005;23(1):89-103. https://doi.org/10.1108/02634500510577492 DOI: https://doi.org/10.1108/02634500510577492
Rastogi S, Sharma A. Expectations from a private multispeciality hospital: A moderated-mediation analysis. Int J Pharm Healthc Mark. 2020;14(2):325-48. https://doi.org/10.1108/IJPHM-06-2019-0040 DOI: https://doi.org/10.1108/IJPHM-06-2019-0040
Abelsson T, Morténius H, Bergman S, Karlsson AK. Quality and availability of information in primary healthcare: The patient perspective. Scand J Prim Health Care. 2020;38(1):33-41. https://doi.org/10.1080/02813432.2020.1718311 PMid:32003287 DOI: https://doi.org/10.1080/02813432.2020.1718311
Chang CW, Tseng TH, Woodside AG. Configural algorithms of patient satisfaction, participation in diagnostics, and treatment decisions’ influences on hospital loyalty. J Serv Mark. 2013;27(2):91-103. https://doi.org/10.1108/08876041311309225 DOI: https://doi.org/10.1108/08876041311309225
Bougie R, Sekaran U. Research methods for business: A skillbuilding approach. 8th ed. Hoboken, NJ: Wiley; 2020.
Kock N, Hadaya P. Minimum sample size estimation in PLSSEM: The inverse square root and gamma-exponential methods: Sample size in PLS-based SEM. Inf Syst J. 2018;28(1):227-61. https://doi.org/10.1111/isj.12131 DOI: https://doi.org/10.1111/isj.12131
Memon MA, Ting H, Cheah JH, Thurasamy R, Chuah F, Cham TH. Sample size for survey research: Review and recommendations. J Appl Struct Equ Model. 2020;4(2):1-20. https://doi.org/10.47263/JASEM.4(2)01 DOI: https://doi.org/10.47263/JASEM.4(2)01
Johnson DM, Russell RS. SEM of service quality to predict overall patient satisfaction in medical clinics: A case study. Qual Manag J. 2015;22(4):18-36. https://doi.org/10.1080/10686967.2015.11918448 DOI: https://doi.org/10.1080/10686967.2015.11918448
Kim CE, Shin JS, Lee J, Lee YJ, Kim M, Choi A, et al. Quality of medical service, patient satisfaction and loyalty with a focus on interpersonal-based medical service encounters and treatment effectiveness: A cross-sectional multicenter study of complementary and alternative medicine (CAM) hospitals. BMC Complement Altern Med. 2017;17(1):174. https://doi.org/10.1186/s12906-017-1691-6 PMid:28351389 DOI: https://doi.org/10.1186/s12906-017-1691-6
Bobâlcă C, Gătej(Bradu) C, Ciobanu O. Developing a scale to measure customer loyalty. Procedia Econ Finance. 2012;3:623-8. https://doi.org/10.1016/S2212-5671(12)00205-5 DOI: https://doi.org/10.1016/S2212-5671(12)00205-5
Sarstedt M, Hair JF, Pick M, Liengaard BD, Radomir L, Ringle CM. Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychol Mark. 2022;39(5):1035-64. https://doi.org/10.1002/mar.21640 DOI: https://doi.org/10.1002/mar.21640
Hair JF, Risher JJ, Sarstedt M, Ringle CM. When to use and how to report the results of PLS-SEM. Eur Bus Rev. 2019;31(1):2-24. https://doi.org/10.1108/EBR-11-2018-0203 DOI: https://doi.org/10.1108/EBR-11-2018-0203
Shmueli G, Sarstedt M, Hair JF, Cheah JH, Ting H, Vaithilingam S, et al. Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. Eur J Mark. 2019;53(11):2322-47. https://doi.org/10.1108/EJM-02-2019-0189 DOI: https://doi.org/10.1108/EJM-02-2019-0189
Ringle CM, Sarstedt M. Gain more insight from your PLS-SEM results: The importance-performance map analysis. Ind Manag Data Syst. 2016;116(9):1865-86. https://doi.org/10.1108/IMDS-10-2015-0449 DOI: https://doi.org/10.1108/IMDS-10-2015-0449
Henseler J, Ringle CM, Sarstedt M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J Acad Mark Sci. 2015;43:115-35. https://doi.org/10.1007/s11747-014-0403-8 DOI: https://doi.org/10.1007/s11747-014-0403-8
Grönroos C. A service quality model and its marketing implications. Eur J Mark. 1984;18(4):36-44. https://doi.org/10.1108/EUM0000000004784 DOI: https://doi.org/10.1108/EUM0000000004784
Cerin E. Moderators. In: Michalos AC, editor. Encycl. Qual. Life Well- Res, Dordrecht: Springer Netherlands; 2014. p. 4102-4. https://doi.org/10.1007/978-94-007-0753-5_1830 DOI: https://doi.org/10.1007/978-94-007-0753-5_1830
Memon MA, Cheah JH, Ramayah T, Ting H, Chuah F, Cham TH. Moderation analysis: Issues and guidelines. J Appl Struct Equ Model. 2019;3:1-11. https://doi.org/10.47263/JASEM.3(1)01 DOI: https://doi.org/10.47263/JASEM.3(1)01
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Victorine Levana, Ferdi Antonio (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0