Relationship Between Phylogenetic of Apium and Foeniculum Plants from Central Java, Indonesia, and Their Secondary Metabolites Potency against COVID-19 Protease

Authors

  • Hermin Pancasakti Kusumaningrum Biotechnology Study Program, Department of Biology, Faculty of Science and Mathematics, Diponegoro University,Semarang, Indonesia
  • Rejeki Siti Ferniah Biotechnology Study Program
  • Siti Nur Jannah Biotechnology Study Program
  • Mufida Budi Kurniawati Biotechnology Study Program
  • Anis Afifah Biotechnology Study Program
  • Yoshua Mario Sumbodo Biotechnology Study Program
  • Salma Seftia Hanif Biotechnology Study Program
  • Tia Erfianti Post Graduate Study Program
  • Yuriza Eshananda Biology Study Program

DOI:

https://doi.org/10.3889/oamjms.2022.9852

Keywords:

Apium, Foeniculum, Phylogenetic, COVID-19 proteases

Abstract

BACKGROUND: The emergence of COVID-19 in the late of 2019 resulted in the massive screening of drugs, including natural products, to support the current vaccines. Apium and Foeniculum vegetables are members of the Apiaceae family that potentially used to be natural immunosuppressant.

AIM: The purpose of this research is to analyze the phylogenetic position between these two plants as well as find out their secondary metabolites potency against COVID-19 main protease (Mpro) and the papain-like protease (PLpro).

METHODS: The phylogenetic analysis of Apium and Foeniculum from Indonesia was carried out based on internal transcribed spacer (ITS) region and the bioactive virtual screening assay was completed through AutoDock Vina software.

CONCLUSION: Overall, Apium and Foeniculum have close relationships among the members of Apiaceae after maximum likelihood analysis. Furthermore, it also has 70 similar bioactive compounds that some of these potentially inhibit both of COVID-19 proteases.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. J Chin Med Assoc. 2020;38(3):217-20. https://doi.org/10.1097/JCMA.0000000000000270 PMid:32134861 DOI: https://doi.org/10.1097/JCMA.0000000000000270

Tan W, Zhao X, Ma X, Wang W, Niu P, Xu W, et al. A novel coronavirus genome identified in a cluster of pneumonia cases-whuan, China 2019-2020. China CDC Wkly. 2020;2(4):61-2. https://doi.org/10.46234/ccdcw2020.017 PMid:34594763 DOI: https://doi.org/10.46234/ccdcw2020.017

Wu Y, Ho W, Huang Y, Jin DY, Li S, Liu SL, et al. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet. 2020;395(10228):949-50. https//doi.org/10.1016/S0140-6736(20)30557-2 PMid:32151324 DOI: https://doi.org/10.1016/S0140-6736(20)30557-2

Sah R, Rodrigues-Morales AJ, Jha R, Chu DK, Gu H, Peiris M, et al. Complete genome sequence of novel coronavirus (SARS-CoV-2) strain isolated in Nepal. Microbiol Res Announc. 2020;9(11):e00169-20. https://doi.org/10.1128/MRA.00169-20 PMid:32165386 DOI: https://doi.org/10.1128/MRA.00169-20

Ma C, Wang J. Validation and invalidation of SARS-CoV-2 papain-like protease inhibitors. ACS Pharmacol Transl Sci. 2022;5(2):102-209. https://doi.org/10.1021/acsptsci.1c00240 PMid:35178512 DOI: https://doi.org/10.1021/acsptsci.1c00240

Mengist HM, Dilnessa T, Jin T. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem. 2021;9:622898. https://doi.org/10.3389/fchem.2021.622898 PMid:33889562 DOI: https://doi.org/10.3389/fchem.2021.622898

Kooti W, Daraei N. A review of antioxidant activity of Apium (Apium graveolens L). J Evid Based Complement Altern Med. 2017;22(4):1029-34. https://doi.org/10.1177/2156587217717415 PMid:28701046 DOI: https://doi.org/10.1177/2156587217717415

Wijaya CH, Epriliati I. Daily Vegetables in Indonesia. Indonesian: Gramedia Pustaka Utama; 2019. p. 61.

Khairullah AR, Solikhah TI, Ansori AN, Hidayatullah AR, Hartadi EB, Ramandinianto SC, et al. Review on the pharmacological and health aspects of Apium graveolens or Apium: An update. Syst Rev Pharm. 2021;12(1):606-12. http://doi.org/10.31838/srp.2021.1.87

Rifqiyanti N, Wahyuni A. Foeniculum (Foeniculum vulgare) leaf infusion effect on mamary gland activity and kidney function of lactating rats. Nusantara Biosci. 2019;11(1):101-5. https://doi.org/10.13057/nusbiosci/n110117 DOI: https://doi.org/10.13057/nusbiosci/n110117

Badgujar SB, Patel VV, Bandivdekar AH. Foeniculum vulgare mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. Biomed Res Int. 2014;2014:842674. https://doi.org/10.1155/2014/842674 PMid:25162032 DOI: https://doi.org/10.1155/2014/842674

Kahered J. The family pennaticeae and its relationships to apiales. Bot J Linn Soc. 2003;141(1):1-24. https://doi.org/10.1046/j.1095-8339.2003.00110.x DOI: https://doi.org/10.1046/j.1095-8339.2003.00110.x

Jimenez-Mejias P, Vargas P. Taxonomy of the tribe apieae (Apiaceae) revisited as revealed by molecular phylogenies and morphological characters. Phytotaxa. 2015;212(1):57-79. http://doi.org/10.11646/phytotaxa.212.1.2 DOI: https://doi.org/10.11646/phytotaxa.212.1.2

Mawarni SN, Khairunnisa D, Larasati I, Rizqo N, Erfianti T, Kusumaningrum HP, et al. Application of doyle and doyle method for DNA isolation from pamelo yellow orange (Citrus maxima Merr), lime orange (C. limon) and sunkist orange (C. sinensis). J Phys Conf Ser. 2021;1943(1):012079. https://doi.org/10.1088/1742-6596/1943/1/012079 DOI: https://doi.org/10.1088/1742-6596/1943/1/012079

Kusumaningrum HP, Budiharjo A, Suprihadi A, Eshananda Y, Fadillah A, Pangestuti DR. The characterization of Citrus sp. from Parang Island Karimunjawa based on morphological, DNA barcoding and nutritional analysis. Int J Genet Mole Biol. 2018;10(3):26-38. https://doi.org/10.5897/IJGMB2018.0167 DOI: https://doi.org/10.5897/IJGMB2018.0167

Kumar S, Stecher G, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics across computing platforms. Mole Biol Evol. 2018;35(6):1547-9. https://doi.org/10.1093/molbev/msy096 PMid:29722887 DOI: https://doi.org/10.1093/molbev/msy096

Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289-93. https://doi.org/10.1038/s41586-020-2223-y PMid:322724481 DOI: https://doi.org/10.1038/s41586-020-2223-y

Rut W, Lv Z, Zmudzinski M, Patchett S, Nayak D, Snipas SJ, et al. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti- COVID-19 drug design. Sci Adv. 2020;6(42):1-12. https://doi.org/10.1126/sciadv.abd4596 PMid:33067239 DOI: https://doi.org/10.1126/sciadv.abd4596

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. Autodock4 and autodocktools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16): 2785-91. https://doi.org/10.1002/jcc.21256 PMid:19399780 DOI: https://doi.org/10.1002/jcc.21256

Trott O, Olson AJ. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455-61. https://doi.org/10.1002/jcc.21334 PMid:19499576 DOI: https://doi.org/10.1002/jcc.21334

Sambrook J, Russel D. Molecular Cloning: A Laboratory Manual. 3rd ed., Vol. 3. New York: Cold Spring Harbor Laboratory Press; 2001. p. 130.

Saravanaperumal SA, La Terza A. Polyphenolics free DNA isolation and optimization of PCR-RAPD for Foeniculum (Foeniculum vulgare Mill.) from mature and young leaves. Afr J Biotechnol. 2021;11(35):8622-31. https://doi.org/10.5897/AJB11.1676 DOI: https://doi.org/10.5897/AJB11.1676

Barbas CF 3rd, Burton DR, Scott KJ, Silverman GJ. Quantitation DNA and RNA. CSH Protoc. 2007;2007:pdb.ip47. https://doi.org/10.1101/pdb.ip47 PMid:21356961 DOI: https://doi.org/10.1101/pdb.ip47

Choudary S, Meena RS, Jethra G, Sharma R, Panwar A. Optimised methodology for high quality DNA isolation from leaves and seeds of Foeniculum (Foeniculum vulgare). J Plant Dev Sci. 2015;7(2):173-5.

Pafundo S, Gulli M, Marmiroli N. Comparison of DNA extraction methods and development of duplex and real-time to detect tomato, carrot, and Apium in food. J Agri Food Chem. 2011;59(19):10414-24. https://doi.org/10.1021/jf202382s PMid:21894887 DOI: https://doi.org/10.1021/jf202382s

Zhou J, Peng H, Downie SR, Liu ZW, Gong XA. Molecular phylogeny of Chinese Apiaceae subfamily Apioideae inferred from nuclear ribosomal DNA internal transcribed spacer sequences. Taxon. 2008;57(2):402-16. https://doi.org/10.2307/25066012 DOI: https://doi.org/10.2307/25066012

Hall BG. Phylogenetic Trees Made Easy: A How to Manual. 5th ed. Oxford: Oxford University Press; 2018. p. 148.

Nei M. Molecular Evolutionary Genetics. New York: Colombia University Press; 1987. https://doi.org/10.7312/nei-92038 DOI: https://doi.org/10.7312/nei-92038

Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, et al. KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 2012;53(2):e1. http://doi.org/10.1093/pcp/pcr165 PMid:22123792 DOI: https://doi.org/10.1093/pcp/pcr165

Duke JA. Database of Biologically Active Phytochemicals and their Activity. Boca Raton: CRC Press; 2020. p. 30. https://doi.org/10.1201/9780429332869 DOI: https://doi.org/10.1201/9780429332869

Afriza D, Suriyah WH, Ichwan SJ. In silico analysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. J Phys: Conf Ser. 2018;1073(3):032001. https://doi.org/10.1088/1742-6596/1073/3/032001 DOI: https://doi.org/10.1088/1742-6596/1073/3/032001

Pantsar T, Poso A. Binding affinity via docking: Fact and fiction. Molecules. 2018;23(8):1899. https://doi.org/10.3390/molecules23081899 PMid:30061498 DOI: https://doi.org/10.3390/molecules23081899

Shomu C, Karuppiah H, Sundaram J. Antiviral activity of seselin from Aegle marmelos against nuclear polyhedrosis virus infection in the larvae of silkworm. J Ethnopharmacol. 2019;245:112155. https://doi.org/10.1016/j.jep.2019.112155 PMid:31449858 DOI: https://doi.org/10.1016/j.jep.2019.112155

Finch A, Pillans P. P-glycoprotein and its role in drug-drug interactions. Aust Prescr. 2014;37(4):137-9. https://doi.org/10.18773/austprescr.2014.050 DOI: https://doi.org/10.18773/austprescr.2014.050

Srivastava V, Yadav A, Sarkar P. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Mater Today Proc. 2020;49:2999- 3007. https://doi.org/10.1016/j.matpr.2020.10.055 PMid:33078096 DOI: https://doi.org/10.1016/j.matpr.2020.10.055

Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):257-63. https://doi.org/10.1093/nar/gky318 PMid:29718510 DOI: https://doi.org/10.1093/nar/gky318

Pratama MR, Hadi P, Siswandono S. ADMET properties of novel 5-O-benzoylpinostrobin derivatives. J Basic Clin Physiol Pharmacol. 2019;30(6):251. https://doi.org/10.1515/jbcpp-2019-0251 PMid:31851612 DOI: https://doi.org/10.1515/jbcpp-2019-0251

Nguyen DD, Gao K, Chen J, Wang R, Wei GW. Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Chem Sci J. 2020;11(44):12036-46. https://doi.org/10.1039/D0SC04641H DOI: https://doi.org/10.1039/D0SC04641H

Farhat N, Khan AU. Repurposing drug molecule against SARS-CoV-2 (COVID-19) through molecular docking and dynamics: A quick approach to pick FDA approved drugs. J Mole Model. 2021;27(11):312. https://doi.org/10.1007/s00894-021-04923-w PMid:34601658 DOI: https://doi.org/10.1007/s00894-021-04923-w

Alfaro M, Alfaro I, Angel C. Identification of potential inhibitors of SARS-CoV-2 papain-like protease from tropane alkaloids from Schizantus porrigens: A molecular docking study. Chem Phys Lett. 2020;761:138068. https://doi.org/10.1016/j.cplett.2020.138068 PMid:33052144 DOI: https://doi.org/10.1016/j.cplett.2020.138068

Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the storm: Natural immunosuppressants as adjuvants to target the cytokine storm in COVID-19. Front Pharmacol. 2021;11:583777. https://doi.org/10.3389/fphar.2020.583777 PMid:33708109 DOI: https://doi.org/10.3389/fphar.2020.583777

Babaei F, Nassiri-Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr. 2020;8(10):5215-27. https://doi.org/10.1002/fsn3.1858 PMid:33133525 DOI: https://doi.org/10.1002/fsn3.1858

Bachiega TF, De Sousa JP, Bastos JK, Sforcin JM. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/ anti-inflammatory action on cytokine production by murine macrophages. J Pharm Pharmacol. 2020;64(4) 610-6. https://doi.org/10.1111/j.2042-7158.2011.01440.x PMid:22420667 DOI: https://doi.org/10.1111/j.2042-7158.2011.01440.x

Bachiega TF, Sforcin JM. Lemongrass and citral effect on cytokines production by murine macrophages. J Ethnopharmacol. 2011;137(1):909-13. https://doi.org/10.1016/j.jep.2011.07.021 PMid:21782918 DOI: https://doi.org/10.1016/j.jep.2011.07.021

Downloads

Published

2022-07-05

How to Cite

1.
Kusumaningrum HP, Ferniah RS, Jannah SN, Kurniawati MB, Afifah A, Sumbodo YM, Hanif SS, Erfianti T, Eshananda Y. Relationship Between Phylogenetic of Apium and Foeniculum Plants from Central Java, Indonesia, and Their Secondary Metabolites Potency against COVID-19 Protease. Open Access Maced J Med Sci [Internet]. 2022 Jul. 5 [cited 2024 Apr. 26];10(A):1234-41. Available from: https://oamjms.eu/index.php/mjms/article/view/9852

Funding data