The Role of Gut Dysbiosis in Malnutrition Mechanism in CKD-5 HD Patients

Authors

  • Esti Widiasih Doctoral Study Program in Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia; Department of Clinical Nutrition, Faculty of Medicine, Universitas Muhammadiyah Semarang, Semarang, Indonesia
  • Hertanto Wahyu Subagio Doctoral Study Program in Medical and Health Sciences, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia
  • Lestariningsih Lestariningsih Department of Internal Medicine, Nephrology and Hypertension Division, Faculty of Medicine, Universitas Diponegoro, Dr. Kariadi Hospital, Semarang, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9870

Keywords:

Gut dysbiosis, Malnutrition mechanism, CKD-5 HD patients

Abstract

Patients with terminal stage chronic kidney disease who have undergone hemodialysis (PGK-5 HD) have a high risk of developing malnutrition, which is characterized by wasting protein-energy and micronutrient deficiencies. Studies show a high prevalence of malnutrition in CKD-5 HD patients. The pathogenic mechanisms of malnutrition in CKD-5 HD are complex and involve the interaction of several pathophysiological changes including decreased appetite and nutrient intake, hormonal disturbances, metabolic imbalances, inflammation, increased catabolism, and abnormalities associated with dialysis action. A clear understanding of the pathophysiological mechanisms involved in the development of malnutrition in CKD-5 HD is required to develop strategies and interventions that are appropriate, effective, and reduce negative clinical outcomes. This article is a review of the pathophysiological mechanisms of malnutrition in CKD-5 HD patients caused by chronic inflammation due to intestinal dysbiosis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Carrero JJ, Stenvinkel P, Cuppari L, Ikizler TA, Kalantar- Zadeh K, Kaysen G, et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: A consensus statement from the international society of renal nutrition and metabolism (ISRNM). J Ren Nutr. 2013;23(2):77-90. https://doi.org/10.1053/j.jrn.2013.01.001 PMid:23428357 DOI: https://doi.org/10.1053/j.jrn.2013.01.001

Thurlow JS, Joshi M, Yan G, Norris KC, Agodoa LY, Yuan CM, et al. Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy. Am J Nephrol. 2021;52(2):98-107. https://doi.org/10.1159/000514550 PMid:33752206 DOI: https://doi.org/10.1159/000514550

Indonesian Renal Registry. Tim Indonesian Renal Registry. Indonesia: Indonesian Renal Registry. PERNEFRI; 2018. p. 46.

Thaha M, Raka Widiana IG. The role of inflammation in chronic kidney disease. Indones J Kidney Hypertens. 2019;2(3):1-9. https://doi.org/10.32867/inakidney.v2i3.33 DOI: https://doi.org/10.32867/inakidney.v2i3.33

Liu S, Liu H, Chen L, Liang SS, Shi K, Meng W, et al. Effect of probiotics on the intestinal microbiota of hemodialysis patients: A randomized trial. Eur J Nutr. https://doi.org/10.1007/s00394-020-02207-2 PMid:32112136 DOI: https://doi.org/10.1007/s00394-020-02207-2

Botero Palacio LE, Delgado Serrano L, Cepeda Hernández ML, Portillo Obando PD, Zambrano Eder MM. The human microbiota : The role of microbal communities in health and disease. Acta Biol Colombiana. 2015;21(1):5-15. https://doi.org/10.15446/abc.v21n1.49761 DOI: https://doi.org/10.15446/abc.v21n1.49761

Cani PD. Human gut microbiome: Hopes, threats and promises. Gut. 2018;67(9):1716-25. https://doi.org/10.1136/gutjnl-2018-316723 PMid:29934437 DOI: https://doi.org/10.1136/gutjnl-2018-316723

Conrad R, Vlassov AV. The human microbiota: Composition, functions, and therapeutic potential. Med Sci Rev. 2015;2:92-103. https://doi.org/10.12659/msrev.895154 DOI: https://doi.org/10.12659/MSRev.895154

Rivière A, Selak M, Lantin D, Leroy F, De Vuystv L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:11-9. https://doi.org/10.3389/fmicb.2016.00979 PMid:27446020 DOI: https://doi.org/10.3389/fmicb.2016.00979

Leone VA, Cham CM, Chang EB. Diet, gut microbes, and genetics in immune function: Can we leverage our current knowledge to achieve better outcomes in inflammatory bowel diseases? Curr Opin Immunol. 2014;31:16-23. https://doi.org/10.1016/j.coi.2014.08.004 PMid:25214301 DOI: https://doi.org/10.1016/j.coi.2014.08.004

Venegas DP, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)- mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:1486. https://doi.org/10.3389/fimmu.2019.01486 PMid:31316522 DOI: https://doi.org/10.3389/fimmu.2019.01486

Graboski AL, Redinbo MR. Gut-derived protein-bound uremic toxins. Toxins. 2020;12(9):590. https://doi.org/10.3390/toxins12090590 PMid:32932981 DOI: https://doi.org/10.3390/toxins12090590

Hobby GP, Karaduta O, Dusio GF, Singh M, Zybailov BL, Arthur JM. Chronic kidney disease and the gut microbiome. Am J Physiol Renal Physiol. 2019;316(6):1211-7. https://doi.org/10.1152/ajprenal.00298.2018 PMid:30864840 DOI: https://doi.org/10.1152/ajprenal.00298.2018

Armani RG, Ramezani A, Yasir A, Sharma S, Canziani ME, Raj DS. Gut microbiome in chronic kidney disease. Curr Hypertens Rep. 2017;19(4):29. https://doi.org/10.1007/s11906-017-0727-0 PMid:28343357 DOI: https://doi.org/10.1007/s11906-017-0727-0

Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308-15. https://doi.org/10.1038/ki.2012.345 PMid:22992469 DOI: https://doi.org/10.1038/ki.2012.345

Hu X, Ouyang S, Xie Y, Gong Z, Du J. Characterizing the gut microbiota in patients with chronic kidney disease. Postgrad Med. 2020;132(6):495-505. https://doi.org/10.1080/00325481.2020.1744335 PMid:32241215 DOI: https://doi.org/10.1080/00325481.2020.1744335

Lau WL, Kalantar-Zadeh K, Vaziri ND. The gut as a source of inflammation in chronic kidney disease. Nephron. 2015;130(2):92-8. https://doi.org/10.1159/000381990 PMid:25967288 DOI: https://doi.org/10.1159/000381990

Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25(4):657-70. https://doi.org/10.1681/asn.2013080905 PMid:24231662 DOI: https://doi.org/10.1681/ASN.2013080905

Cobo G, Lindholm B, Stenvinkel P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transplant. 2018;33(3):35-40. https://doi.org/10.1093/ndt/gfy175 PMid:30281126 DOI: https://doi.org/10.1093/ndt/gfy175

Velasquez MT, Andrews SC, Raj DS. Protein energy metabolism in chronic kidney disease. In: Chronic Renal Disease. 2nd ed., Ch. 16. Netherlands: Elsevier; 2020. p. 225-48. https://doi.org/10.1016/b978-0-12-815876-0.00016-4 DOI: https://doi.org/10.1016/B978-0-12-815876-0.00016-4

Cuppari L, Meireles MS, Ramos CI, Kamimura MA. Subjective global assessment for the diagnosis of protein-energy wasting in nondialysis-dependent chronic kidney disease patients. J Ren Nutr. 2014;24(6):385-9. https://doi.org/10.1053/j.jrn.2014.05.004 PMid:25106727 DOI: https://doi.org/10.1053/j.jrn.2014.05.004

Amdur RL, Feldman HI, Gupta J, Yang W, Kanetsky P, Shlipak M, et al. Inflammation and progression of CKD: The CRIC study. Clin J Am Soc Nephrol. 2016;11(9):1546-56. https://doi.org/10.2215/CJN.13121215 PMid:27340285 DOI: https://doi.org/10.2215/CJN.13121215

Jagadeswaran D, Indhumathi E, Hemamalini AJ, Sivakumar V, Soundararajan P, Jayakumar M. Inflammation and nutritional status assessment by malnutrition inflammation score and its outcome in pre-dialysis chronic kidney disease patients. Clin Nutr. 2019;38(1):341-7. https://doi.org/10.1016/j.clnu.2018.01.001 PMid:29398341 DOI: https://doi.org/10.1016/j.clnu.2018.01.001

Iorember FM. Malnutrition in chronic kidney disease. Front Pediatr. 2018;6:161-71. https://doi.org/10.3389/fped.2018.00161 PMid:29974043 DOI: https://doi.org/10.3389/fped.2018.00161

Koppe L, Fouque D, Kalantar‐Zadeh K. Kidney cachexia or protein‐energy wasting in chronic kidney disease: Facts and numbers. J Cachexia Sarcopenia Muscle. 2019;10(3):479-84. https://doi.org/10.1002/jcsm.12421 PMid:30977979 DOI: https://doi.org/10.1002/jcsm.12421

Sarav M, Kovesdy CP. Protein energy wasting in hemodialysis patients. Clin J Am Soc Nephrol. 2018;13(10):1558-60. https://doi.org/10.2215/cjn.02150218 PMid:29954825 DOI: https://doi.org/10.2215/CJN.02150218

Sabatino A, Regolisti G, Karupaiah T, Sahathevan S, Sadu Singh BK, Khor BH. Protein-energy wasting and nutritional supplementation in patients with end-stage renal disease on hemodialysis. Clin Nutr. 2017;36(3):663-71. https://doi.org/10.1016/j.clnu.2016.06.007 PMid:27371993 DOI: https://doi.org/10.1016/j.clnu.2016.06.007

Chen CT, Lin SH, Chen JS, Hsu YJ. Muscle wasting in hemodialysis patients: New therapeutic strategies for resolving an old problem. Scientific World J. 2013;2013:643954. https://doi.org/10.1155/2013/643954 PMid:24382946 DOI: https://doi.org/10.1155/2013/643954

Patsalos O, Dalton B, Leppanen J, Ibrahim MA, Himmerich H. Impact of TNF-α inhibitors on body weight and BMI: A systematic review and meta-analysis. Front Pharmacol. 2020;11:481-96. https://doi.org/10.3389/fphar.2020.00481 PMid:32351392 DOI: https://doi.org/10.3389/fphar.2020.00481

Uy MC, Lim-Alba R, Chua E. Association of dialysis malnutrition score with hypoglycemia and quality of life among patients with diabetes on maintenance hemodialysis. J ASEAN Fed Endocr Soc. 2018;33(2):137-45. https://doi.org/10.15605/jafes.033.02.05 PMid:33442119 DOI: https://doi.org/10.15605/jafes.033.02.05

Rackaityte E, Lynch SV. The human microbiome in the 21st century. Nat Commun. 2020;11:5256. https://doi.org/10.1038/s41467-020-18983-8 DOI: https://doi.org/10.1038/s41467-020-18983-8

Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392-400. https://doi.org/10.1038/nm.4517 PMid:29634682 DOI: https://doi.org/10.1038/nm.4517

Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online. 2016;12(1):5-16. https://doi.org/10.4137/EBO.S36436 PMid:27199545 DOI: https://doi.org/10.4137/EBO.S36436

Galloway-Peña J, Hanson B. Tools for analysis of the microbiome. Dig Dis Sci. 2020;65:674-85. https://doi.org/10.1007/s10620-020-06091-y PMid:32002757 DOI: https://doi.org/10.1007/s10620-020-06091-y

Primec M, Mičetić-Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: A scoping review. Anal Biochem. 2017;526:9-21. https://doi.org/10.1016/j.ab.2017.03.007 PMid:28300535 DOI: https://doi.org/10.1016/j.ab.2017.03.007

Hsu YL, Chen CC, Lin YT, Wu WK, Chang LC, Lai CH, et al. Evaluation and optimization of sample handling methods for quantification of short-chain fatty acids in human fecal samples by GC–MS. J Proteome Res. 2019;18(5):1948-57. https://doi.org/10.1021/acs.jproteome.8b00536 PMid:30895795 DOI: https://doi.org/10.1021/acs.jproteome.8b00536

Chen MX, Wang SY, Kuo CH, Tsai IL. Metabolome analysis for investigating host-gut microbiota interactions. J Formos Med Assoc. 2019;118(1):S10-22. https://doi.org/10.1016/j.jfma.2018.09.007 PMid:30269936 DOI: https://doi.org/10.1016/j.jfma.2018.09.007

Chai L, Luo Q, Cai K, Wang K, Xu B. Reduced fecal short-chain fatty acids levels and the relationship with gut microbiota in IgA nephropathy. BMC Nephrol. 2021;22(1):209. https://doi.org/10.1186/s12882-021-02414-x PMid:34082732 DOI: https://doi.org/10.1186/s12882-021-02414-x

Wang S, Lv D, Jiang S, Jiang J, Liang M, Hou F, et al. Quantitative reduction in short-chain fatty acids, especially butyrate, contributes to the progression of chronic kidney disease. Clin Sci. 2019;133(17):1857-70. https://doi.org/10.1042/cs20190171 PMid:31467135 DOI: https://doi.org/10.1042/CS20190171

Downloads

Published

2022-05-20

How to Cite

1.
Widiasih E, Subagio HW, Lestariningsih L. The Role of Gut Dysbiosis in Malnutrition Mechanism in CKD-5 HD Patients. Open Access Maced J Med Sci [Internet]. 2022 May 20 [cited 2024 Nov. 23];10(E):1016-23. Available from: https://oamjms.eu/index.php/mjms/article/view/9870

Issue

Section

Public Health Education and Training

Categories