The Role of Gut Dysbiosis in Malnutrition Mechanism in CKD-5 HD Patients
DOI:
https://doi.org/10.3889/oamjms.2022.9870Keywords:
Gut dysbiosis, Malnutrition mechanism, CKD-5 HD patientsAbstract
Patients with terminal stage chronic kidney disease who have undergone hemodialysis (PGK-5 HD) have a high risk of developing malnutrition, which is characterized by wasting protein-energy and micronutrient deficiencies. Studies show a high prevalence of malnutrition in CKD-5 HD patients. The pathogenic mechanisms of malnutrition in CKD-5 HD are complex and involve the interaction of several pathophysiological changes including decreased appetite and nutrient intake, hormonal disturbances, metabolic imbalances, inflammation, increased catabolism, and abnormalities associated with dialysis action. A clear understanding of the pathophysiological mechanisms involved in the development of malnutrition in CKD-5 HD is required to develop strategies and interventions that are appropriate, effective, and reduce negative clinical outcomes. This article is a review of the pathophysiological mechanisms of malnutrition in CKD-5 HD patients caused by chronic inflammation due to intestinal dysbiosis.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Carrero JJ, Stenvinkel P, Cuppari L, Ikizler TA, Kalantar- Zadeh K, Kaysen G, et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: A consensus statement from the international society of renal nutrition and metabolism (ISRNM). J Ren Nutr. 2013;23(2):77-90. https://doi.org/10.1053/j.jrn.2013.01.001 PMid:23428357 DOI: https://doi.org/10.1053/j.jrn.2013.01.001
Thurlow JS, Joshi M, Yan G, Norris KC, Agodoa LY, Yuan CM, et al. Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy. Am J Nephrol. 2021;52(2):98-107. https://doi.org/10.1159/000514550 PMid:33752206 DOI: https://doi.org/10.1159/000514550
Indonesian Renal Registry. Tim Indonesian Renal Registry. Indonesia: Indonesian Renal Registry. PERNEFRI; 2018. p. 46.
Thaha M, Raka Widiana IG. The role of inflammation in chronic kidney disease. Indones J Kidney Hypertens. 2019;2(3):1-9. https://doi.org/10.32867/inakidney.v2i3.33 DOI: https://doi.org/10.32867/inakidney.v2i3.33
Liu S, Liu H, Chen L, Liang SS, Shi K, Meng W, et al. Effect of probiotics on the intestinal microbiota of hemodialysis patients: A randomized trial. Eur J Nutr. https://doi.org/10.1007/s00394-020-02207-2 PMid:32112136 DOI: https://doi.org/10.1007/s00394-020-02207-2
Botero Palacio LE, Delgado Serrano L, Cepeda Hernández ML, Portillo Obando PD, Zambrano Eder MM. The human microbiota : The role of microbal communities in health and disease. Acta Biol Colombiana. 2015;21(1):5-15. https://doi.org/10.15446/abc.v21n1.49761 DOI: https://doi.org/10.15446/abc.v21n1.49761
Cani PD. Human gut microbiome: Hopes, threats and promises. Gut. 2018;67(9):1716-25. https://doi.org/10.1136/gutjnl-2018-316723 PMid:29934437 DOI: https://doi.org/10.1136/gutjnl-2018-316723
Conrad R, Vlassov AV. The human microbiota: Composition, functions, and therapeutic potential. Med Sci Rev. 2015;2:92-103. https://doi.org/10.12659/msrev.895154 DOI: https://doi.org/10.12659/MSRev.895154
Rivière A, Selak M, Lantin D, Leroy F, De Vuystv L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:11-9. https://doi.org/10.3389/fmicb.2016.00979 PMid:27446020 DOI: https://doi.org/10.3389/fmicb.2016.00979
Leone VA, Cham CM, Chang EB. Diet, gut microbes, and genetics in immune function: Can we leverage our current knowledge to achieve better outcomes in inflammatory bowel diseases? Curr Opin Immunol. 2014;31:16-23. https://doi.org/10.1016/j.coi.2014.08.004 PMid:25214301 DOI: https://doi.org/10.1016/j.coi.2014.08.004
Venegas DP, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)- mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:1486. https://doi.org/10.3389/fimmu.2019.01486 PMid:31316522 DOI: https://doi.org/10.3389/fimmu.2019.01486
Graboski AL, Redinbo MR. Gut-derived protein-bound uremic toxins. Toxins. 2020;12(9):590. https://doi.org/10.3390/toxins12090590 PMid:32932981 DOI: https://doi.org/10.3390/toxins12090590
Hobby GP, Karaduta O, Dusio GF, Singh M, Zybailov BL, Arthur JM. Chronic kidney disease and the gut microbiome. Am J Physiol Renal Physiol. 2019;316(6):1211-7. https://doi.org/10.1152/ajprenal.00298.2018 PMid:30864840 DOI: https://doi.org/10.1152/ajprenal.00298.2018
Armani RG, Ramezani A, Yasir A, Sharma S, Canziani ME, Raj DS. Gut microbiome in chronic kidney disease. Curr Hypertens Rep. 2017;19(4):29. https://doi.org/10.1007/s11906-017-0727-0 PMid:28343357 DOI: https://doi.org/10.1007/s11906-017-0727-0
Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308-15. https://doi.org/10.1038/ki.2012.345 PMid:22992469 DOI: https://doi.org/10.1038/ki.2012.345
Hu X, Ouyang S, Xie Y, Gong Z, Du J. Characterizing the gut microbiota in patients with chronic kidney disease. Postgrad Med. 2020;132(6):495-505. https://doi.org/10.1080/00325481.2020.1744335 PMid:32241215 DOI: https://doi.org/10.1080/00325481.2020.1744335
Lau WL, Kalantar-Zadeh K, Vaziri ND. The gut as a source of inflammation in chronic kidney disease. Nephron. 2015;130(2):92-8. https://doi.org/10.1159/000381990 PMid:25967288 DOI: https://doi.org/10.1159/000381990
Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25(4):657-70. https://doi.org/10.1681/asn.2013080905 PMid:24231662 DOI: https://doi.org/10.1681/ASN.2013080905
Cobo G, Lindholm B, Stenvinkel P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transplant. 2018;33(3):35-40. https://doi.org/10.1093/ndt/gfy175 PMid:30281126 DOI: https://doi.org/10.1093/ndt/gfy175
Velasquez MT, Andrews SC, Raj DS. Protein energy metabolism in chronic kidney disease. In: Chronic Renal Disease. 2nd ed., Ch. 16. Netherlands: Elsevier; 2020. p. 225-48. https://doi.org/10.1016/b978-0-12-815876-0.00016-4 DOI: https://doi.org/10.1016/B978-0-12-815876-0.00016-4
Cuppari L, Meireles MS, Ramos CI, Kamimura MA. Subjective global assessment for the diagnosis of protein-energy wasting in nondialysis-dependent chronic kidney disease patients. J Ren Nutr. 2014;24(6):385-9. https://doi.org/10.1053/j.jrn.2014.05.004 PMid:25106727 DOI: https://doi.org/10.1053/j.jrn.2014.05.004
Amdur RL, Feldman HI, Gupta J, Yang W, Kanetsky P, Shlipak M, et al. Inflammation and progression of CKD: The CRIC study. Clin J Am Soc Nephrol. 2016;11(9):1546-56. https://doi.org/10.2215/CJN.13121215 PMid:27340285 DOI: https://doi.org/10.2215/CJN.13121215
Jagadeswaran D, Indhumathi E, Hemamalini AJ, Sivakumar V, Soundararajan P, Jayakumar M. Inflammation and nutritional status assessment by malnutrition inflammation score and its outcome in pre-dialysis chronic kidney disease patients. Clin Nutr. 2019;38(1):341-7. https://doi.org/10.1016/j.clnu.2018.01.001 PMid:29398341 DOI: https://doi.org/10.1016/j.clnu.2018.01.001
Iorember FM. Malnutrition in chronic kidney disease. Front Pediatr. 2018;6:161-71. https://doi.org/10.3389/fped.2018.00161 PMid:29974043 DOI: https://doi.org/10.3389/fped.2018.00161
Koppe L, Fouque D, Kalantar‐Zadeh K. Kidney cachexia or protein‐energy wasting in chronic kidney disease: Facts and numbers. J Cachexia Sarcopenia Muscle. 2019;10(3):479-84. https://doi.org/10.1002/jcsm.12421 PMid:30977979 DOI: https://doi.org/10.1002/jcsm.12421
Sarav M, Kovesdy CP. Protein energy wasting in hemodialysis patients. Clin J Am Soc Nephrol. 2018;13(10):1558-60. https://doi.org/10.2215/cjn.02150218 PMid:29954825 DOI: https://doi.org/10.2215/CJN.02150218
Sabatino A, Regolisti G, Karupaiah T, Sahathevan S, Sadu Singh BK, Khor BH. Protein-energy wasting and nutritional supplementation in patients with end-stage renal disease on hemodialysis. Clin Nutr. 2017;36(3):663-71. https://doi.org/10.1016/j.clnu.2016.06.007 PMid:27371993 DOI: https://doi.org/10.1016/j.clnu.2016.06.007
Chen CT, Lin SH, Chen JS, Hsu YJ. Muscle wasting in hemodialysis patients: New therapeutic strategies for resolving an old problem. Scientific World J. 2013;2013:643954. https://doi.org/10.1155/2013/643954 PMid:24382946 DOI: https://doi.org/10.1155/2013/643954
Patsalos O, Dalton B, Leppanen J, Ibrahim MA, Himmerich H. Impact of TNF-α inhibitors on body weight and BMI: A systematic review and meta-analysis. Front Pharmacol. 2020;11:481-96. https://doi.org/10.3389/fphar.2020.00481 PMid:32351392 DOI: https://doi.org/10.3389/fphar.2020.00481
Uy MC, Lim-Alba R, Chua E. Association of dialysis malnutrition score with hypoglycemia and quality of life among patients with diabetes on maintenance hemodialysis. J ASEAN Fed Endocr Soc. 2018;33(2):137-45. https://doi.org/10.15605/jafes.033.02.05 PMid:33442119 DOI: https://doi.org/10.15605/jafes.033.02.05
Rackaityte E, Lynch SV. The human microbiome in the 21st century. Nat Commun. 2020;11:5256. https://doi.org/10.1038/s41467-020-18983-8 DOI: https://doi.org/10.1038/s41467-020-18983-8
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392-400. https://doi.org/10.1038/nm.4517 PMid:29634682 DOI: https://doi.org/10.1038/nm.4517
Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online. 2016;12(1):5-16. https://doi.org/10.4137/EBO.S36436 PMid:27199545 DOI: https://doi.org/10.4137/EBO.S36436
Galloway-Peña J, Hanson B. Tools for analysis of the microbiome. Dig Dis Sci. 2020;65:674-85. https://doi.org/10.1007/s10620-020-06091-y PMid:32002757 DOI: https://doi.org/10.1007/s10620-020-06091-y
Primec M, Mičetić-Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: A scoping review. Anal Biochem. 2017;526:9-21. https://doi.org/10.1016/j.ab.2017.03.007 PMid:28300535 DOI: https://doi.org/10.1016/j.ab.2017.03.007
Hsu YL, Chen CC, Lin YT, Wu WK, Chang LC, Lai CH, et al. Evaluation and optimization of sample handling methods for quantification of short-chain fatty acids in human fecal samples by GC–MS. J Proteome Res. 2019;18(5):1948-57. https://doi.org/10.1021/acs.jproteome.8b00536 PMid:30895795 DOI: https://doi.org/10.1021/acs.jproteome.8b00536
Chen MX, Wang SY, Kuo CH, Tsai IL. Metabolome analysis for investigating host-gut microbiota interactions. J Formos Med Assoc. 2019;118(1):S10-22. https://doi.org/10.1016/j.jfma.2018.09.007 PMid:30269936 DOI: https://doi.org/10.1016/j.jfma.2018.09.007
Chai L, Luo Q, Cai K, Wang K, Xu B. Reduced fecal short-chain fatty acids levels and the relationship with gut microbiota in IgA nephropathy. BMC Nephrol. 2021;22(1):209. https://doi.org/10.1186/s12882-021-02414-x PMid:34082732 DOI: https://doi.org/10.1186/s12882-021-02414-x
Wang S, Lv D, Jiang S, Jiang J, Liang M, Hou F, et al. Quantitative reduction in short-chain fatty acids, especially butyrate, contributes to the progression of chronic kidney disease. Clin Sci. 2019;133(17):1857-70. https://doi.org/10.1042/cs20190171 PMid:31467135 DOI: https://doi.org/10.1042/CS20190171
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Esti Widiasih, Hertanto Wahyu Subagio , Lestariningsih Lestariningsih (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0