Propolis Mitigates Rifampicin/Isoniazid-induced Lipid-redox and Metabolic Profile in an Experimental Animal Model of Oxidative Stress

Authors

  • Ahmed Abdulsallam Alkhansaa Teaching hospital, Mosul, Iraq
  • Imad A. Thanoon College of Medicine
  • Rwqaya S. Dawood College of Medicine, University of Mosul, Mosul, Iraq
  • Abdulrahman I. Abduljabbar Graduated Physician, University of Mosul, Mosul, Iraq

DOI:

https://doi.org/10.3889/oamjms.2022.9918

Keywords:

Isoniazid, Rifampicin, Propolis, FBS, TAS, MDA, Lipid

Abstract

Objective: Adverse drug reactions are the most common cause of drug withdrawal in chronic treatment settings. Tuberculosis (TB) has been considered a recurrent and relapsing disease that needs long-term therapy. Most patients suffer from the adverse effects of TB therapy. Hence, various remedies were used to tackle these adverse effects including antioxidant vitamins, herbal remedies, and others. Aims: The present intervention study aims to investigate the role of propolis in protecting the animal model against oxidant/antioxidant induced by TB therapy together with the propolis role in modulation of metabolic profile as part of lipid peroxidation context. Methods: Serum was collected from rats exposed to rifampicin/isoniazid with or without propolis therapy alongside the control placebo group for comparison. Results: The results have shown a significant (p<0.05) reduction of malondialdehyde and significant (p<0.05) elevation of total antioxidant status. Lipid profile positively improved indicated by significantly reduced total cholesterol, triglyceride, and elevated high-density lipoprotein. Conclusion:  our study confirmed that propolis provides protection against redox and metabolic derangement induced by rifampicin/isoniazid medications which are in current TB therapy, therefore, we do advise the use of propolis as an adjunct therapy for patients on such medications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Yıldız O, Can Z, Saral Ö, Yuluğ E, Öztürk F, Aliyazıcıoğlu R, et al. Hepatoprotective potential E of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats. Evid Based Complement Altern Med. 2013;2013:461478. https://doi.org/10.1155/2013/461478 PMid:24250716 DOI: https://doi.org/10.1155/2013/461478

Denisow B, Pietrzyk DM. Biological and therapeutic properties of bee pollen: A review. J Sci Food Agric. 2016;96(13):4303-9. https://doi.org/10.1002/jsfa.7729 PMid:27013064 DOI: https://doi.org/10.1002/jsfa.7729

Sun C, Wu Z, Wang Z, Zhang H. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid Based Complement Altern Med. 2015;2015:595393. https://doi.org/10.1155/2015/595393 PMid:26351514 DOI: https://doi.org/10.1155/2015/595393

Kumari S, Naik P, Vishma BL, Salian SR, Devkar RA, Khan S, et al. Mitigating effect of Indian propolis against mitomycin C induced bone marrow toxicity. Cytotechnology. 2016;68(5):1789-800. https://doi.org/10.1007/s10616-015-9931-4 PMid:26590833 DOI: https://doi.org/10.1007/s10616-015-9931-4

Jin X, Liu Q, Jia L, Li M, Wang X. Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell Mol Neurobiol. 2015;35(3):323-33. https://doi.org/10.1007/s10571-014-0128-8 PMid:25377066 DOI: https://doi.org/10.1007/s10571-014-0128-8

Silva RB, Santos NA, Martins NM, Ferreira DA, Barbosa F, Souza VO, et al. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats. Neuroscience. 2013;233:86-94. https://doi.org/10.1016/j.neuroscience.2012.12.041 PMid:23291456 DOI: https://doi.org/10.1016/j.neuroscience.2012.12.041

Alyane M, Kebsa LB, Boussenane HN, Rouibah H, Lahouel M. Cardioprotective effects and mechanism of action of polyphenols extracted from propolis against doxorubicin toxicity. Pak J Pharm Sci. 2008;21(3):201-9. PMid:18614413

Baltas N, Karaoglu SA, Tarakci C, Kolayli S. Effect of propolis in gastric disorders: Inhibition studies on the growth of Helicobacter pylori and production of its urease. J Enzyme Inhib Med Chem. 2016;31(Suppl 2):46-50. https://doi.org/10.1080/14756366.2016.1186023 PMid:27233102 DOI: https://doi.org/10.1080/14756366.2016.1186023

Izuta H, Shimazawa M, Tsuruma K, Araki Y, Mishima S, Hara H. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells. BMC Complement Altern Med. 2009;9(1):45. https://doi.org/10.1186/1472-6882-9-45 PMid:19917137 DOI: https://doi.org/10.1186/1472-6882-9-45

Bazmandegan G, Boroushaki MT, Shamsizadeh A, Ayoobi F, Hakimizadeh E, Allahtavakoli M. Brown propolis attenuates cerebral ischemia-induced oxidative damage via affecting antioxidant enzyme system in mice. Biomed Pharmacother. 2017;85:503-10. https://doi.org/10.1016/j.biopha.2016.11.057 PMid:27889229 DOI: https://doi.org/10.1016/j.biopha.2016.11.057

LeBlanc BW, Davis OK, Boue S, DeLucca A, Deeby T. Antioxidant activity of Sonoran Desert bee pollen. Food Chem. 2009;115(4):1299-305. https://doi.org/10.1016/j.foodchem.2009.01.055 DOI: https://doi.org/10.1016/j.foodchem.2009.01.055

Ferreira D, Rocha HC, Kreutz LC, Loro VL, Marqueze A, Koakoski G, et al. Bee products prevent agrichemical-induced oxidative damage in fish. PLoS One. 2013;8(10):e74499. https://doi.org/10.1371/journal.pone.0074499 PMid:24098336 DOI: https://doi.org/10.1371/journal.pone.0074499

Kim SB, Jo YH, Liu Q, Ahn JH, Hong IP, Han SM, et al. Optimization of extraction condition of bee pollen using response surface methodology: correlation between anti-melanogenesis, antioxidant activity, and phenolic content. Molecules. 2015;20(11):19764-74. https://doi.org/10.3390/molecules201119656 PMid:26540033 DOI: https://doi.org/10.3390/molecules201119656

de Florio-Almeida JD, dos Reis AS, Heldt LF, Pereira D, Bianchin M, de Moura C, et al. Lyophilized bee pollen extract: A natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT Food Sci Technol. 2017;76:299-305. https://doi.org/10.1016/j.lwt.2016.06.017 DOI: https://doi.org/10.1016/j.lwt.2016.06.017

Rzepecka-Stojko A, Stojko J, Kurek-Górecka A, Górecki M, Kabała-Dzik A, Kubina R, et al. Polyphenols from bee pollen: Structure, absorption, metabolism and biological activity. Molecules. 2015;20(12):21732-49. https://doi.org/10.3390/molecules201219800 PMid:26690100 DOI: https://doi.org/10.3390/molecules201219800

Arct J, Pytkowska K. Flavonoids as components of biologically active cosmeceuticals. Clin Dermatol. 2008;26(4):347-57. https://doi.org/10.1016/j.clindermatol.2008.01.004 PMid:18691514 DOI: https://doi.org/10.1016/j.clindermatol.2008.01.004

Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016;5:e47 https://doi.org/10.1017/jns.2016.41 PMid:28620474 DOI: https://doi.org/10.1017/jns.2016.41

Bonamigo T, Campos JF, Oliveira AS, Torquato HF, Balestieri JB, Cardoso CA, et al. Antioxidant and cytotoxic activity of propolis of Plebeia droryana and Apis mellifera (Hymenoptera, Apidae) from the Brazilian Cerrado biome. PLoS One. 2017;12(9):e0183983. https://doi.org/10.1371/journal.pone.0183983 PMid:28898258 DOI: https://doi.org/10.1371/journal.pone.0183983

Bonamigo T, Campos JF, Alfredo TM, Balestieri JB, Cardoso CA, Paredes-Gamero EJ, et al. Antioxidant, cytotoxic, and toxic activities of propolis from two native bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides. Oxid Med Cell Longev. 2017;201:1038153. https://doi.org/10.1155/2017/1038153 PMid: 28377794 DOI: https://doi.org/10.1155/2017/1038153

Bankova V. Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol. 2005;100(1-2):114-7. https://doi.org/10.1016/j.jep.2005.05.004 PMid:15993016 DOI: https://doi.org/10.1016/j.jep.2005.05.004

Bittencourt ML, Ribeiro PR, Franco RL, Hilhorst HW, de Castro RD, Fernandez LG. Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential bioactive compounds. Food Res Int. 2015;76(Pt 3):449-57. https://doi.org/10.1016/j.foodres.2015.07.008 PMid:28455025 DOI: https://doi.org/10.1016/j.foodres.2015.07.008

Narimane S, Demircan E, Salah A, Ozcelik BO, Salah R. Correlation between antioxidant activity and phenolic acids profile and content of Algerian propolis: Influence of solvent. Pak J Pharm Sci. 2017;30(Suppl 4):1417-23. PMid:29043991

Andrade JK, Denadai M, de Oliveira CS, Nunes ML, Narain N. Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res Int. 2017;101:129-38. https://doi.org/10.1016/j.foodres.2017.08.066 PMid:28941675 DOI: https://doi.org/10.1016/j.foodres.2017.08.066

Zhang C, Shen X, Chen J, Jiang X, Hu F. Identification of free radical scavengers from Brazilian green propolis using off‐line HPLC‐DPPH assay and LCMS. J Food Sci. 2017;82(7):1602-7. https://doi.org/10.1111/1750-3841.13730 PMid:28561958 DOI: https://doi.org/10.1111/1750-3841.13730

Socha R, Gałkowska D, Bugaj M, Juszczak L. Phenolic composition and antioxidant activity of propolis from various regions of Poland. Nat Prod Res. 2015;29(5):416-22. https://doi.org/10.1080/14786419.2014.949705 PMid:25185953 DOI: https://doi.org/10.1080/14786419.2014.949705

Mujica V, Orrego R, Pérez J, Romero P, Ovalle P, Zúñiga- Hernández J, et al. The role of propolis in oxidative stress and lipid metabolism: A randomized controlled trial. Evid Based Complement Altern Med. 2017;2017:4272940. https://doi.org/10.1155/2017/4272940 PMid:28539963 DOI: https://doi.org/10.1155/2017/4272940

Jasprica I, Mornar A, Debeljak Ž, Smolčić-Bubalo A, Medić-Šarić M, Mayer L, et al. In vivo study of propolis supplementation effects on antioxidative status and red blood cells. J Ethnopharmacol. 2007;110(3):548-54. https://doi.org/10.1016/j.jep.2006.10.023 PMid:17113741 DOI: https://doi.org/10.1016/j.jep.2006.10.023

Fang Y, Li J, Ding M, Xu X, Zhang J, Jiao P, et al. Ethanol extract of propolis protects endothelial cells from oxidized low density lipoprotein-induced injury by inhibiting lectin-like oxidized low density lipoprotein receptor-1-mediated oxidative stress. Exp Biol Med. 2014;239(12):1678-87. https://doi.org/10.1177/1535370214541911 PMid:24962173 DOI: https://doi.org/10.1177/1535370214541911

Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997;386(6620):73-7. https://doi.org/10.1038/386073a0 PMid:9052782 DOI: https://doi.org/10.1038/386073a0

Tian H, Sun HW, Zhang JJ, Zhang XW, Zhao L, Guo SD, et al. Ethanol extract of propolis protects macrophages from oxidized low density lipoprotein-induced apoptosis by inhibiting CD36 expression and endoplasmic reticulum stress-C/EBP homologous protein pathway. BMC Complement Altern Med. 2015;15(1):230. https://doi.org/10.1186/s12906-015-0759-4 PMid:26169264 DOI: https://doi.org/10.1186/s12906-015-0759-4

Althanoon Z, Faisal IM, Ahmad AA, Merkhan MM, Merkhan MM. Pharmacological aspects of statins are relevant to their structural and physicochemical properties. Sys Rev Pharm. 2020;11(7):167-71. https://doi.org/10.31838/srp.2020.7.27

Almukhtar HM, Faisal IM, Merkhan MM. Effects of statins on platelet count in hyperlipidemic patients. Int J Pharm Res. 2020;12(2):2640-4. https://doi.org/10.31838/ijpr/2020.12.02.357 DOI: https://doi.org/10.31838/ijpr/2020.12.02.357

Almukhtar HM, Faisal IM, Merkhan MM. Acute effect of atorvastatin in comparison with rosuvastatin on glucose homeostasis in hypercholesteremic patients. Pharmacology. 2021;25:25-34.

Younis HY, Imad A. Effect of zinc as an add on to metformin therapy on serum lipid profile and uric acid in Type 2 diabetes mellitus patients. Curr Topics Pharm. 2021;25:54-8.

Almukhtar HM, Faisal IM, Merkhan MM. Short-term treatment with atorvastatin selectively decreases Lymphocyte count. Res J Pharm Technol. 2022;15(2):689-94. https://doi.org/10.52711/0974-360X.2022.00114 DOI: https://doi.org/10.52711/0974-360X.2022.00114

Althanoon ZA, Merkhan MM. Effects of zinc supplementation on metabolic status in patients with metabolic syndrome. Acta Pol Pharm. 2021:78(4):521-6. https://doi.org/10.32383/appdr/141348 DOI: https://doi.org/10.32383/appdr/141348

Zhao L, Pu L, Wei J, Li J, Wu J, Xin Z, et al. Brazilian green propolis improves antioxidant function in patients with Type 2 diabetes mellitus. Int J Environ Res Public Health. 2016;13(5):498. https://doi.org/10.3390/ijerph13050498 PMid:27187435 DOI: https://doi.org/10.3390/ijerph13050498

Downloads

Published

2022-05-26

How to Cite

1.
Abdulsallam A, Thanoon IA, Dawood RS, Abduljabbar AI. Propolis Mitigates Rifampicin/Isoniazid-induced Lipid-redox and Metabolic Profile in an Experimental Animal Model of Oxidative Stress. Open Access Maced J Med Sci [Internet]. 2022 May 26 [cited 2024 Nov. 21];10(A):965-70. Available from: https://oamjms.eu/index.php/mjms/article/view/9918