The Biological Role of Advanced Glycation End Products in the Development and Progression of Colorectal Cancer

Authors

  • Muthear Dawood College of Pharmacy, University of Mosul, Mosul, Iraq
  • Zaid Muwafaq Younus College of Pharmacy, University of Mosul, Mosul, Iraq
  • Mohammed Alnori College of Pharmacy, University of Mosul, Mosul, Iraq
  • Sameer Mahmood College of Pharmacy, University of Mosul, Mosul, Iraq

DOI:

https://doi.org/10.3889/oamjms.2022.9926

Keywords:

Glycation, Cancer, Colon, Oxidative stress

Abstract

“Colorectal cancer” (CRC) is one of the most prevalent cancers, posing a scientific challenge and serving as a model for investigating the molecular pathways underlying its development. “Advanced glycation end products” (AGEs) have drawn interest in this context. The buildup of these diverse, chemically complex groups, which are formed by a “non-enzymatic interaction” between reducing sugar and a range of macromolecules, significantly increases “inflammation and oxidative stress” in the body, which has long been associated to cancer formation. The traditional pathways that promote AGE formation, as well as the significance of AGEs’ interaction with the receptor for “advanced glycation end products” (RAGE) and other means involved in CRC initiation and progression, are discussed in this review.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Bai Y, Li D, Zhou T, Qin N, Li Z, Yu Z, et al. Coumarins from the roots of Angelica dahurica with antioxidant and antiproliferative activities. J Funct Foods. 2016;20:453-62. https://doi.org/10.1016/j.jff.2015.11.018 DOI: https://doi.org/10.1016/j.jff.2015.11.018

Khalil RR, Mustafa YF. Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith apple seeds by different methods. Syst Rev Pharm. 2020;11(2):57-63.

Albarhawi A, Albarhawi A, Sahib M. Efficacy of urine cytology in the detection of bladder urothelial carcinoma: A retrospective study in medical city-Baghdad. Ann Coll Med Mosul. 2021;43(1):10-5. https://doi.org/10.33899/mmed.2021.129565.1078 DOI: https://doi.org/10.33899/mmed.2021.129565.1078

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. https://doi.org/10.3322/caac.21660 PMid:33538338 DOI: https://doi.org/10.3322/caac.21660

Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5(1):22. https://doi.org/10.1038/s41392-020-0116-z PMid:32296018 DOI: https://doi.org/10.1038/s41392-020-0116-z

Mármol I, Sánchez-de-Diego C, Dieste AP, Cerrada E, Yoldi MJ. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18(1):197. https://doi.org/10.3390/ijms18010197 PMid:28106826 DOI: https://doi.org/10.3390/ijms18010197

Arvelo F, Sojo F, Cotte C. Biology of colorectal cancer. Ecancermedicalscience. 2015;9:520. https://doi.org/10.3332/ecancer.2015.520 PMid:25932044 DOI: https://doi.org/10.3332/ecancer.2015.520

Azizian-Farsani F, Abedpoor N, Sheikhha MH, Gure AO, Nasr-Esfahani MH, Ghaedi K. Receptor for advanced glycation end products acts as a fuel to colorectal cancer development. Front Oncol. 2020;10:552283. https://doi.org/10.3389/fonc.2020.552283 PMid:33117687 DOI: https://doi.org/10.3389/fonc.2020.552283

Kong SY, Takeuchi M, Hyogo H, McKeown-Eyssen G, Yamagishi SI, Chayama K, et al. The association between glyceraldehyde-derived advanced glycation end-products and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2015;24(12):1855-63. https://doi.org/10.1016/s0959-8049(16)30451-8 PMid:26404963 DOI: https://doi.org/10.1016/S0959-8049(16)30451-8

Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24(6):1207-22. https://doi.org/10.1007/s10552-013-0201-5 PMid:23563998 DOI: https://doi.org/10.1007/s10552-013-0201-5

Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019;14(2):89-103. https://doi.org/10.5114/pg.2018.81072 PMid:31616522 DOI: https://doi.org/10.5114/pg.2018.81072

Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: A quantitative overview of the epidemiological evidence. Int J Cancer. 2009;125(1):171-80. https://doi.org/10.1002/ijc.24343 PMid:19350627 DOI: https://doi.org/10.1002/ijc.24343

Museum N. Biomarkers in Colorectal Cancer. Anticancer Res. 2016;36(3):1093-338.

Schröter D, Höhn A. Role of advanced glycation end products in carcinogenesis and their therapeutic implications. Curr Pharm Des. 2019;24(44):5245-51. https://doi.org/10.2174/1381612825666190130145549 PMid:30706806 DOI: https://doi.org/10.2174/1381612825666190130145549

Dariya B, Nagaraju GP. Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov Today. 2020;25(9):1614-23. https://doi.org/10.1016/j.drudis.2020.07.003 PMid:32652310 DOI: https://doi.org/10.1016/j.drudis.2020.07.003

Wang M, Yang Y, Liao Z. Diabetes and cancer: Epidemiological and biological links. World J Diabetes. 2020;11(6):227-38. https://doi.org/10.4239/wjd.v11.i6.227 PMid:32547697 DOI: https://doi.org/10.4239/wjd.v11.i6.227

Lin JA, Wu CH, Lu CC, Hsia SM, Yen GC. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression. Mol Nutr Food Res. 2016;60(8):1850-64. https://doi.org/10.1002/mnfr.201500759 PMid:26774083 DOI: https://doi.org/10.1002/mnfr.201500759

Uribarri J, Del Castillo MD, De la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, et al. Dietary advanced glycation end products and their role in health and disease. Adv Nutr. 2015;6(4):461-73. https://doi.org/10.3945/an.115.008433 PMid:26178030 DOI: https://doi.org/10.3945/an.115.008433

Zhou X, Lin N, Zhang M, Wang X, An Y, Su Q, et al. Circulating soluble receptor for advanced glycation end products and other factors in type 2 diabetes patients with colorectal cancer. BMC Endocr Disord. 2020;20(1):170. https://doi.org/10.1186/s12902-020-00647-9 PMid:33187505 DOI: https://doi.org/10.1186/s12902-020-00647-9

Gugliucci A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv Nutr. 2017;8(1):54-62. https://doi.org/10.3945/an.116.013912 PMid:28096127 DOI: https://doi.org/10.3945/an.116.013912

Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr Diab Rep. 2014;14(1):453. https://doi.org/10.1007/s11892-013-0453-1 PMid:24292971 DOI: https://doi.org/10.1007/s11892-013-0453-1

De Vos LC, Lefrandt JD, Dullaart RP, Zeebregts CJ, Smit AJ. Advanced glycation end products: An emerging biomarker for adverse outcome in patients with peripheral artery disease. Atherosclerosis. 2016;254:291-9. https://doi.org/10.1016/j.atherosclerosis.2016.10.012 DOI: https://doi.org/10.1016/j.atherosclerosis.2016.10.012

Peng X, Ma J, Chen F, Wang M. Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct. 2011;2(6):289-301. https://doi.org/10.1039/c1fo10034c PMid:21779567 DOI: https://doi.org/10.1039/c1fo10034c

Klietz ML, Kaiser HW, Machens HG, Aitzetmüller MM. Advanced glycation end products: Building on the concept of the “Common soil” in metabolic disease. Endocrinology. 2020;161(1):bqz006. DOI: https://doi.org/10.1210/endocr/bqz006

Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic Res. 2013;47(1):3-27. https://doi.org/10.3109/10715762.2013.815348 PMid:23767955 DOI: https://doi.org/10.3109/10715762.2013.815348

Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, et al. The development of maillard reaction, and advanced glycation end product (Age)-receptor for age (rage) signaling inhibitors as novel therapeutic strategies for patients with age-related diseases. Molecules. 2020;25(23):5591. https://doi.org/10.3390/molecules25235591 PMid:33261212 DOI: https://doi.org/10.3390/molecules25235591

Aragno M, Mastrocola R. Dietary sugars and endogenous formation of advanced glycation endproducts: Emerging mechanisms of disease. Nutrients. 2017;9(4):385. https://doi.org/10.3390/nu9040385 PMid:28420091 DOI: https://doi.org/10.3390/nu9040385

Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019;9(12):888. https://doi.org/10.3390/biom9120888 PMid:31861217 DOI: https://doi.org/10.3390/biom9120888

Bǎbţan AM, Ilea A, Boşca BA, Crişan M, Petrescu NB, Collino M, et al. Advanced glycation end products as biomarkers in systemic diseases: Premises and perspectives of salivary advanced glycation end products. Biomark Med. 2019;13(6):479-95. https://doi.org/10.2217/bmm-2018-0448 PMid:30968701 DOI: https://doi.org/10.2217/bmm-2018-0448

Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients. 2010;2(12):1247-65. https://doi.org/10.3390/nu2121247 PMid:22254007 DOI: https://doi.org/10.3390/nu2121247

Mendoza-Herrera K, Aradillas-García C, Mejía-Diaz M, Alegría-Torres J, Garay-Sevilla M, Luevano-Contreras C. Association of dietary advanced glycation end products with metabolic syndrome in young mexican adults. Medicines (Basel). 2018;5(4):128. https://doi.org/10.3390/medicines5040128 PMid:30513741 DOI: https://doi.org/10.3390/medicines5040128

Alnori MK, Dawood MN, Ajeel MA. The role of symmetrical and asymmetric dimethyl-l-arginine as biomarkers in dialysisdependent AKI patients. Mil Med Sci Lett. 2021;90(4):165-71. https://doi.org/10.31482/mmsl.2021.034 DOI: https://doi.org/10.31482/mmsl.2021.034

Mustafa Y, Mohammed E, Khalil R. Synthesis, characterization, and anticoagulant activity of new functionalized biscoumarins. Egypt J Chem. 2021;64(8):3641. DOI: https://doi.org/10.21608/ejchem.2021.73699.3641

Dawood MN, Mahmood AJ. Liver function tests in toxoplasmosis. Ann Coll Med Mosul. 2012;38(2):68-72. https://doi.org/10.33899/mmed.2012.64600 DOI: https://doi.org/10.33899/mmed.2012.64600

Bettiga A, Fiorio F, Di Marco F, Trevisani F, Romani A, Porrini E, et al. The modern western diet rich in advanced glycation endproducts (AGEs): An overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://doi.org/10.3390/nu11081748 PMid:31366015 DOI: https://doi.org/10.3390/nu11081748

Chen H, Wu L, Li Y, Meng J, Lin N, Yang D, et al. Advanced glycation end products increase carbohydrate responsive element binding protein expression and promote cancer cell proliferation. Mol Cell Endocrinol. 2014;395(1-2):69-78. https://doi.org/10.1016/j.mce.2014.07.021 PMid:25111846 DOI: https://doi.org/10.1016/j.mce.2014.07.021

Hudson BI, Dong C, Gardener H, Elkind MS, Wright CB, Goldberg R, et al. Serum levels of soluble receptor for advanced glycation end-products and metabolic syndrome: The Northern Manhattan study. Metabolism. 2014;63(9):1125-30. https://doi.org/10.1016/j.metabol.2014.05.011 PMid:25012910 DOI: https://doi.org/10.1016/j.metabol.2014.05.011

Nedić O, Rattan SI, Grune T, Trougakos IP. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic Res. 2013;47(1):28-38. https://doi.org/10.3109/10715762.2013.806798 PMid:23692178 DOI: https://doi.org/10.3109/10715762.2013.806798

Soldatos G, Cooper ME, Jandeleit-Dahm KA. Advancedglycation end products in insulin-resistant states. Curr Hypertens Rep. 2005;7(2):96-102. https://doi.org/10.1007/s11906-005-0081-5 PMid:15748532 DOI: https://doi.org/10.1007/s11906-005-0081-5

Sharaf H, Matou-Nasri S, Wang Q, Rabhan Z, Al-Eidi H, Al Abdulrahman A, et al. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim Biophys Acta. 2015;1852(3):429-41. https://doi.org/10.1016/j.bbadis.2014.12.009 PMid:25514746 DOI: https://doi.org/10.1016/j.bbadis.2014.12.009

Rojas A, Morales MA, Araya P, González I. RAGE-the Receptor of Advanced Glycation End Products. New Jersey: ELS; 2017. p. 1-7. https://doi.org/10.1002/9780470015902.a0027298 DOI: https://doi.org/10.1002/9780470015902.a0027298

Malik P, Chaudhry N, Mittal R, Mukherjee TK. Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim Biophys Acta. 2015;1850(9):1898-904. PMid:26028296 DOI: https://doi.org/10.1016/j.bbagen.2015.05.020

Prasad K. Low levels of serum soluble receptors for advanced glycation end products, biomarkers for disease state: Myth or reality. Int J Angiol. 2014;23(1):11-6. https://doi.org/10.1055/s-0033-1363423 PMid:24627612 DOI: https://doi.org/10.1055/s-0033-1363423

Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (BerL). 2005;83(11):876-86. https://doi.org/10.1007/s00109-005-0688-7 PMid:16133426 DOI: https://doi.org/10.1007/s00109-005-0688-7

Jiao L, Chen L, Alsarraj A, Ramsey D, Duan Z, El-Serag HB. Plasma soluble receptor for advanced glycation end-products and risk of colorectal adenoma. Int J Mol Epidemiol Genet. 2012;3(4):294-304. https://doi.org/10.1158/1538-7445.am2011-4638 PMid:23205181 DOI: https://doi.org/10.1158/1538-7445.AM2011-4638

Perrone A, Giovino A, Benny J, Martinelli F. Advanced glycation end products (ages): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxid Med Cell Longev. 2020;2020:3818196. https://doi.org/10.1155/2020/3818196 PMid:32256950 DOI: https://doi.org/10.1155/2020/3818196

Guimarães EL, Empsen C, Geerts A, Van Grunsven LA. Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J Hepatol. 2010;52(3):389-97. https://doi.org/10.1016/j.jhep.2009.12.007 PMid:20133001 DOI: https://doi.org/10.1016/j.jhep.2009.12.007

Mustafa Y, Khalil R, Mohammed E. Synthesis and antitumor potential of new 7-halocoumarin-4-acetic acid derivatives. Egypt J Chem. 2021;64(7):3711-6. DOI: https://doi.org/10.21608/ejchem.2021.68873.3508

Sasahira T, Akama Y, Fujii K, Kuniyasu H. Expression of receptor for advanced glycation end products and HMGB1/amphoterin in colorectal adenomas. Virchows Arch. 2005;446(4):411-5. https://doi.org/10.1007/s00428-005-1210-x PMid:15789216 DOI: https://doi.org/10.1007/s00428-005-1210-x

Bedoui SA, Barbirou M, Stayoussef M, Dallel M, Mokrani A, Makni L, et al. Identification of novel advanced glycation end products receptor gene variants associated with colorectal cancer in Tunisians: A case-control study. Gene. 2020;754:144893. https://doi.org/10.1016/j.gene.2020.144893 PMid:32544495 DOI: https://doi.org/10.1016/j.gene.2020.144893

Sakellariou S, Fragkou P, Levidou G, Gargalionis AN, Piperi C, Dalagiorgou G, et al. Clinical significance of AGE-RAGE axis in colorectal cancer: Associations with glyoxalase-I, adiponectin receptor expression and prognosis. BMC Cancer. 2016;16(1):1-14. http://dx.doi.org/10.1186/s12885-016-2213-5 DOI: https://doi.org/10.1186/s12885-016-2213-5

Kuniyasu H, Chihara Y, Kondo H. Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int J Cancer. 2003;104(6):722-7. https://doi.org/10.1002/ijc.11016 PMid:12640679 DOI: https://doi.org/10.1002/ijc.11016

Liang H. Advanced glycation end products induce proliferation, invasion and epithelial-mesenchymal transition of human SW480 colon cancer cells through the PI3K/AKT signaling pathway. Oncol Lett. 2020;19(4):3215-22. https://doi.org/10.3892/ol.2020.11413 PMid:32218866 DOI: https://doi.org/10.3892/ol.2020.11413

Liang H, Zhong Y, Zhou S, Peng L. Knockdown of RAGE expression inhibits colorectal cancer cell invasion and suppresses angiogenesis in vitro and in vivo. Cancer Lett. 2011;313(1):91-8. https://doi.org/10.1016/j.canlet.2011.08.028 PMid:21945853 DOI: https://doi.org/10.1016/j.canlet.2011.08.028

Yuhara H, Steinmaus C, Cohen SE, Corley DA, Tei Y, Buffler PA. Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer. Am J Gastroenterol. 2011;106(11):1911-21. https://doi.org/10.1038/ajg.2011.301 PMid:21912438 DOI: https://doi.org/10.1038/ajg.2011.301

Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: A meta-analysis. J Natl Cancer Inst. 2005;97(22):1679-87. https://doi.org/10.1093/jnci/dji375 PMid:16288121 DOI: https://doi.org/10.1093/jnci/dji375

Deng R, Wu H, Ran H, Kong X, Hu L, Wang X, et al. Glucosederived AGEs promote migration and invasion of colorectal cancer by up-regulating Sp1 expression. Biochim Biophys Acta Gen Subj. 2017;1861(5):1065-74. https://doi.org/10.1016/j.bbagen.2017.02.024 PMid:28237576 DOI: https://doi.org/10.1016/j.bbagen.2017.02.024

Wang P, Lu YC, Li YF, Wang L, Lee SC. Advanced glycation end products increase MDM2 expression via transcription factor KLF5. J Diabetes Res. 2018;2018:3274084. https://doi.org/10.1155/2018/3274084 PMid:30271790 DOI: https://doi.org/10.1155/2018/3274084

Thornalley PJ. Protecting the genome: Defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochem Soc Trans. 2003;31(6):1372-7. https://doi.org/10.1042/bst0311372 PMid:14641066 DOI: https://doi.org/10.1042/bst0311372

Ashraf JM, Shahab U, Tabrez S, Lee EJ, Choi I, Aslam Yusuf M, et al. DNA glycation from 3-deoxyglucosone leads to the formation of AGEs: Potential role in cancer auto-antibodies. Cell Biochem Biophys. 2016;74(1):67-77. https://doi.org/10.1007/s12013-015-0713-6 PMid:26972303 DOI: https://doi.org/10.1007/s12013-015-0713-6

Tamae D, Lim P, Wuenschell GE, Termini J. Mutagenesis and repair induced by the DNA advanced glycation end product N 2-1-(carboxyethyl)-2′-deoxyguanosine in human cells. Biochemistry. 2011;50(12):2321-9. https://doi.org/10.1021/bi101933p PMid:21355561 DOI: https://doi.org/10.1021/bi101933p

Ahmad R, Kumar Sah A, Ahsan H. Biochemistry and pathophysiology of glycation of DNA: Implications in diabetes. Arch Clin Biomed Res. 2017;1(1):32-47. https://doi.org/10.26502/acbr.5017004 DOI: https://doi.org/10.26502/acbr.5017004

Maniakowski Z, Staniszewska M, Czech M, Konopacka M, Rogoli J. The genotoxic and pro-apoptotic activities of advanced glycation end-products (MAGE) Measured with micronuclei assay are inhibited by their low molecular mass counterparts. Genes (Basel). 2021;12(5):729. https://doi.org/10.3390/genes12050729 PMid:34068126 DOI: https://doi.org/10.3390/genes12050729

Maciejczyk M, Zareba K, Koper-Lenkiewicz O, Matowicka-Karna J, Bogusław K. Pro-oxidant enzymes, redox balance and oxidative damage to proteins, lipids and DNA in colorectal cancer tissue. Is oxidative stress dependent on tumour budding and inflammatory infiltration? Cancers (Basel). 2020;12(6):1636. PMid:32575703 DOI: https://doi.org/10.3390/cancers12061636

Stopper H, Schinzel R, Sebekova K, Heidland A. Genotoxicity of advanced glycation end products in mammalian cells. Cancer Lett. 2003;190(2):151-6. https://doi.org/10.1016/s0304-3835(02)00626-2 PMid:12565169 DOI: https://doi.org/10.1016/S0304-3835(02)00626-2

Schupp N, Schinzel R, Heidland A, Stopper H. Genotoxicity of advanced glycation end products: Involvement of oxidative stress and of angiotensin II Type 1 receptors. Ann N Y Acad Sci. 2005;1043:685-95. https://doi.org/10.1196/annals.1333.079 PMid:16037294 DOI: https://doi.org/10.1196/annals.1333.079

Szymczak I, Śliwińska A, Drzewoski J. DNA damage and efficacy of DNA repair in patients with type 2 diabetes and coexisting colorectal cancer. Pol Arch Med Wewn. 2014;124(7-8):352-8. https://doi.org/10.20452/pamw.2337 PMid:24824443 DOI: https://doi.org/10.20452/pamw.2337

Mir AR, Habib S, Khan F, Alam K, Ali A. Structural changes in histone H2A by methylglyoxal generate highly immunogenic amorphous aggregates with implications in auto-immune response in cancer. Glycobiology. 2015;26(2):129-41. https://doi.org/10.1093/glycob/cwv082 PMid:26408820 DOI: https://doi.org/10.1093/glycob/cwv082

Chiavarina B, Nokin MJ, Bellier J, Durieux F, Bletard N, Sherer F, et al. Methylglyoxal-mediated stress correlates with high metabolic activity and promotes tumor growth in colorectal cancer. Int J Mol Sci. 2017;18(1):1-18. https://doi.org/10.3390/ijms18010213 PMid:28117708 DOI: https://doi.org/10.3390/ijms18010213

Lin JA, Wu CH, Yen GC. Methylglyoxal displays colorectal cancerpromoting properties in the murine models of azoxymethane and CT26 isografts. Free Radic Biol Med. 2018;115:436-46. https://doi.org/10.1016/j.freeradbiomed.2017.12.020 PMid:29269310 DOI: https://doi.org/10.1016/j.freeradbiomed.2017.12.020

Aglago EK, Mayén AL, Knaze V, Freisling H, Fedirko V, Hughes DJ, et al. Dietary advanced glycation end-products and colorectal cancer risk in the European prospective investigation into cancer and nutrition (EPIC) study. Nutrients. 2021;13(9):3132. https://doi.org/10.3390/nu13093132 PMid:34579010 DOI: https://doi.org/10.3390/nu13093132

Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the receptor for advanced glycation endproducts (RAGE): A medicinal chemistry Perspective. J Med Chem. 2017;60(17):7213-32. https://doi.org/10.1021/acs.jmedchem.7b00058 PMid:28482155 DOI: https://doi.org/10.1021/acs.jmedchem.7b00058

Zheng J, Zhu W, He F, Li Z, Cai N, Wang HH. An aptamerbased antagonist against the receptor for advanced glycation end-products (RAGE) blocks development of colorectal cancer. Mediators Inflamm. 2021;2021:9958051. https://doi.org/10.1155/2021/9958051 PMid:34035661 DOI: https://doi.org/10.1155/2021/9958051

Mustafa YF, Khalil RR, Mohammed ET. Antimicrobial activity of aqueous extracts acquired from the seeds of two apples’ cultivars. Syst Rev Pharm. 2020;11(2):382-7.

Khalil RR, Mohammed ET, Mustafa YF. Various promising biological effects of Cranberry extract: A review. Clin Schizophr Relat Psychoses. 2021;15(S6):1-9.

Peyroux J, Sternberg M. Advanced glycation endproducts (AGEs): Pharmacological inhibition in diabetes. Pathol Biol. 2006;54(7):405-19. https://doi.org/10.1016/j.patbio.2006.07.006 PMid:16978799 DOI: https://doi.org/10.1016/j.patbio.2006.07.006

Turner DP. Advanced glycation end-products: A biological consequence of lifestyle contributing to cancer disparity. Cancer Res. 2015;75(10):1925-9. https://doi.org/10.1158/0008-5472.can-15-0169 PMid:25920350 DOI: https://doi.org/10.1158/0008-5472.CAN-15-0169

Zińczuk J, Maciejczyk M, Zaręba K, Romaniuk W, Markowski A, Kędra B, et al. Antioxidant barrier, redox status, and oxidative damage to biomolecules in patients with colorectal cancer. Can malondialdehyde and catalase be markers of colorectal cancer advancement? Biomolecules. 2019;9(10):637. https://doi.org/10.3390/biom9100637 PMid:31652642 DOI: https://doi.org/10.3390/biom9100637

Downloads

Published

2022-05-11

How to Cite

1.
Dawood M, Younus ZM, Alnori M, Mahmood S. The Biological Role of Advanced Glycation End Products in the Development and Progression of Colorectal Cancer. Open Access Maced J Med Sci [Internet]. 2022 May 11 [cited 2024 Apr. 24];10(F):487-94. Available from: https://oamjms.eu/index.php/mjms/article/view/9926

Issue

Section

Narrative Review Article

Categories

Similar Articles

You may also start an advanced similarity search for this article.