Seroprevalence Surgery of Anti-SARS-CoV-2 Antibodies Based on COVID-19 Vaccine Type in Academy Community, East Kalimantan, Indonesia

Authors

  • Swandari Paramita Department of Public Health, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
  • Siti Khotimah Department of Biochemistry, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
  • Marwan Marwan Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia; Department of Pulmonology and Respiratory Medicine, Abdul Wahab Sjahranie General Hospital, Samarinda, Indonesia
  • Ronny Isnuwardhana Department of Public Health, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
  • Evi Fitriany Department of Public Health, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
  • A. Z. Syadza Zahratun Nufus Graduate School, Scholl of Veterinary Medicine and Biomedicine, IPB University, Bogor, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.9957

Keywords:

Antibody titer, COVID-19, Indonesia, Seroepidemiologic studies, Vaccination

Abstract

BACKGROUND OF THE STUDY: The implementation of the vaccine on a large scale has almost reached all provinces in Indonesia. East Kalimantan, one of the provinces affected by COVID-19, has also implemented a vaccine program. Seroprevalence surveys are essential to describe the success of vaccine program based on antibody titre test.

AIM OF THE STUDY: This study aims to determine the anti-SARS-CoV-2 antibody titre value based on the type of vaccine received by the academic community in Samarinda, one of the cities most affected by COVID-19 in East Kalimantan.

METHODOLOGY: The study was population-based. The study sampled 100 people from the community. Participants must be in good health, aged 16-60, with a positive COVID-19 test, no comorbid illnesses or other chronic problems, no blood transfusions, and most importantly, have received the least initial dosage of immunization. The data will be analyzed using SPSS 26 and STATA 16. A normality test and Tobit regression test to determine the antibody distribution in each vaccine type. 

RESULTS: The results showed that Moderna COVID-19 Vaccine provided a significant (p=0.001) increase in antibody prediction of 1090 U/ml (95% CI: 764-1416), while Pfizer provided a significant (p=0.000) rise of 766 U/ml (95% CI: 307-1226).

CONCLUSION: According to the results of a seroprevalence survey conducted among the academic community in East Kalimantan, receivers of inactivated vaccinations outnumbered those of mRNA and vector-based vaccines. It can be determined that booster immunizations for students and academic staff are required to guard against COVID-19 infection. As boosters, both Moderna's COVID-19 Vaccine and Pfizer's COVID-19 Vaccine are strongly recommended.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M, et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Sci. 2020;370(6521):1227-30. https://doi.org/10.1126/science.abd7728 PMid:33115920 DOI: https://doi.org/10.1126/science.abd7728

Dan M, Mateus J, Kato YU, Hastie KM, Dawen YU Grifon C, et al. Immunological memory to SARS-CoV-2 assessed for up to eight months after infection. Science. 2021;371(6529):eabf4063. https://doi.org/10.1126/science.abf4063 PMid:33408181 DOI: https://doi.org/10.1126/science.abf4063

Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PK, Thouvenel CD, et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell. 2021;184(1):169-83. e17. https://doi.org/10.21203/rs.3.rs-57112/v1 PMid:33296701 DOI: https://doi.org/10.1016/j.cell.2020.11.029

Contant PN, Embong AK, Kanagaiah P, Chaves FA, Yang H, Branche AR, et al. S protein-reactive IgG and memory b cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. MBio. 2020;11(5):20. https://doi.org/10.1128/mbio.01991-20 DOI: https://doi.org/10.1128/mBio.01991-20

Sterlin D, Mathian A, Miyara M, Mohr A, Anna A, Claër L, et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med. 2021;13(577):eabd2223. https://doi.org/10.1126/scitranslmed.abd2223 PMid:33288662 DOI: https://doi.org/10.1126/scitranslmed.abd2223

Sun X, Wagner AL, Ji J, Huang Z, Fisher BJ, Boulton ML, et al. A conjoint analysis of stated vaccine preferences in Shanghai, China. Vaccine. 2020;38(6):1520-5. https://doi.org/10.1016/j.vaccine.2019.11.062 PMid:31822426 DOI: https://doi.org/10.1016/j.vaccine.2019.11.062

Wagner AL, Boulton ML, Sun X, Mukherjee B, Huang Z, Harmsen IA, et al. Perceptions of measles, pneumonia, and meningitis vaccines among caregivers in Shanghai, China, and the health belief model: A cross-sectional study. BMC Pediatr. 2017;17(1):143. https://doi.org/10.1186/s12887-017-0900-2 PMid:28606106 DOI: https://doi.org/10.1186/s12887-017-0900-2

Miraglia JL, Monteiro CN, Romagnolo AG, Welter EA, Souza JG, Carvalho KI, et al. A seroprevalence survey of anti-SARS-CoV-2 antibodies among individuals 18 years of age or older living in a vulnerable region of the city of São Paulo, Brazil. PLoS One. 2021;16(1):e0255412. https://doi.org/10.1371/journal.pone.0255412 DOI: https://doi.org/10.1371/journal.pone.0255412

Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020;323(23):2427-9. https://doi.org/10.1001/jama.2020.8707 PMid:32432657 DOI: https://doi.org/10.1001/jama.2020.8707

Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Silva AC. The anti-inflammatory potential of ACE2/angiotensin-(1-7)/mas receptor axis: Evidence from basic and clinical research. Curr Drug Targets. 2017;18(11):1301-13. https://doi.org/10.2174/1389450117666160727142401 PMid:27469342 DOI: https://doi.org/10.2174/1389450117666160727142401

Albini A, Guardo GD, Noonan DM, Lombardo M. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: Implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies. Intern Emerg Med. 2020;15(8):759-66. https://doi.org/10.1007/s11739-020-02364-6 PMid:32430651 DOI: https://doi.org/10.1007/s11739-020-02364-6

AlGhatrif M, Cingolani O, Lakatta EG. The dilemma of coronavirus disease 2019, aging, and cardiovascular disease: Insights from cardiovascular aging science. JAMA Cardiol. 2020;5(7):747-8. https://doi.org/10.1001/jamacardio.2020.1329 PMid:32242886 DOI: https://doi.org/10.1001/jamacardio.2020.1329

Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell. 2020;19(7):e13168. https://doi.org/10.1111/acel.13168 PMid:32558150 DOI: https://doi.org/10.1111/acel.13168

Ciaglia E Vecchione C, Puca AA. COVID-19 infection and circulating ACE2 levels: protective role in women and children. Front Pediatr. 2020;8:206. https://doi.org/10.3389/fped.2020.00206 PMid:32391299 DOI: https://doi.org/10.3389/fped.2020.00206

Teijaro JR, Farber DL. COVID-19 vaccines: Modes of immune activation and future challenges. Nat Rev Immunol. 2021;21(4):195-7. https://doi.org/10.1038/s41577-021-00526-x PMid:33674759 DOI: https://doi.org/10.1038/s41577-021-00526-x

Liang Z, Zhu1 H, Wang X, Jing B, Li Z, Xia1 X, et al. Adjuvants for coronavirus vaccines. Front Immunol. 2020;11:589833. PMid:33240278 DOI: https://doi.org/10.3389/fimmu.2020.589833

Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol. 2020;86:106717. https://doi.org/10.1016/j.intimp.2020.106717 PMid:32585611 DOI: https://doi.org/10.1016/j.intimp.2020.106717

Park JW, Lagniton PN, Liu Y, Xu RH. mRNA vaccines for COVID-19: What, why and how. Int J Biol Sci. 2021;17(16):1446-60. https://doi.org/10.7150/ijbs.59233 DOI: https://doi.org/10.7150/ijbs.59233

Naaber P, Tserel L, Kangro K, Sepp E, Jürjenson V, Adamson A, et al. Dynamics of antibody response to BNT162b2 vaccine: After six months: a longitudinal prospective study. Lancet Reg Heal Eur. 2021;10:100208. https://doi.org/10.1016/j.lanepe.2021.100208 PMid:34514454 DOI: https://doi.org/10.1016/j.lanepe.2021.100208

Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592(7855):616-22. https://doi.org/10.1038/s41586-021-03324-6 PMid:33567448 DOI: https://doi.org/10.1038/s41586-021-03324-6

Goel R, Painter M, Apostolidis S, Mathew D, Meng W, Rosenfeld AM, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021;374(6572):abm0829. PMid:34648302 DOI: https://doi.org/10.1126/science.abm0829

Eyre DW, Lumley SF, Wei J, Cox S, James T, Justice A, et al. Quantitative SARS-CoV-2 anti-spike responses to Pfizer-BioNTech and Oxford-AstraZeneca vaccines by previous infection status. Clin Microbiol Infect. 2021;27(10):1516.e7-14. https://doi.org/10.1016/j.cmi.2021.05.041 PMid:34111577 DOI: https://doi.org/10.1016/j.cmi.2021.05.041

Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(2):181-92. https://doi.org/10.1016/s1473-3099(20)30843-4 PMid:33217362 DOI: https://doi.org/10.1016/S1473-3099(20)30843-4

Steensels D, Pierlet N, Penders J, Mesotten D, Heylen L. Comparison of SARS-CoV-2 antibody response following vaccination with BNT162b2 and mRNA-1273. JAMA. 2021;326(15):1533-5. https://doi.org/10.1001/jama.2021.15125 PMid:34459863 DOI: https://doi.org/10.1001/jama.2021.15125

Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA Vaccine. N Engl J Med. 2021;384(14):1372-4. https://doi.org/10.1101/2021.01.29.21250653 PMid:33691060 DOI: https://doi.org/10.1101/2021.01.29.21250653

Saadat S, Tehrani ZR, Logue J, Newman M, Frieman MB, Harris AD, et al. Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2. JAMA. 2021;325(14):1467-9. https://doi.org/10.1001/jama.2021.3341 PMid:33646292 DOI: https://doi.org/10.1001/jama.2021.3341

Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Sci Immunol. 2021;6(58):eabi6950. https://doi.org/10.1126/sciimmunol.abi6950 PMid:33858945 DOI: https://doi.org/10.1126/sciimmunol.abi6950

Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al, Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205-11. https://doi.org/10.1038/s41591-021-01377-8 PMid:34002089 DOI: https://doi.org/10.1038/s41591-021-01377-8

Gazit S, Shlezinger R, Perez G, Lotan R, Peretz A, Tov AB, et al. Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: Reinfections versus breakthrough infections. medRxiv. 2021;2021:21262415. https://doi.org/10.1101/2021.08.24.21262415 DOI: https://doi.org/10.1101/2021.08.24.21262415

Downloads

Published

2022-05-23

How to Cite

1.
Paramita S, Khotimah S, Marwan M, Isnuwardhana R, Fitriany E, Nufus AZSZ. Seroprevalence Surgery of Anti-SARS-CoV-2 Antibodies Based on COVID-19 Vaccine Type in Academy Community, East Kalimantan, Indonesia. Open Access Maced J Med Sci [Internet]. 2022 May 23 [cited 2024 Apr. 18];10(E):1169-73. Available from: https://oamjms.eu/index.php/mjms/article/view/9957

Issue

Section

Public Health Disease Control

Categories